LIST OF FIGURES

Figure 1 Simplified geological map of Aravalli Mountain Belt showing distribution of Proterozoic rocks.

Figure 2A Simplified geological map of Bayana basin showing different lithological formations of Delhi Supergroup.

Figure 2B Columnar section showing lithological units of Bayana basin (Scale 1 Cm = 200 Meters).

Figure 3 Simplified geological map of Khetri Copper Belt illustrating the lithological succession of the area.

Figure 4 Chondrite normalized REE patterns for representative samples of Bayana volcanics (A) and Khetri amphibolites (B).

Figure 5 CaO/Al_2O_3-MgO/10-SiO_2/100 ternary diagram for Bayana volcanics and Khetri amphibolites for the assessment of the effect of post igneous processes on the bulk chemistry.

Figure 6 MgO/TiO_2 versus CaO/TiO_2 diagram for Bayana volcanics for describing the effect of alteration on their major element chemistry.

Figure 7A Harker's variation diagram for Bayana volcanics.

Figure 7B Harker's variation diagram for Khetri amphibolites.
Figure 8A TiO₂ versus Al₂O₃/TiO₂ and CaO/TiO₂ variation diagrams for Bayana volcanics.

Figure 8B TiO₂ versus Al₂O₃/TiO₂ and CaO/TiO₂ variation diagrams for Khetri amphibolites.

Figure 9 MgO versus CaO/Al₂O₃ variation diagram for Bayana volcanics and Khetri amphibolites showing positive relationships.

Figure 10 MgO-Cr, MgO-Ni and MgO-Co variation diagrams for Bayana volcanics and Khetri amphibolites.

Figure 11 Ti versus V diagram for Bayana volcanics and Khetri amphibolites showing positive relationships.

Figure 12 Zr versus various incompatible elements (Y, Nb, Ce, TiO₂ and P₂O₅) and element ratio (Zr/Y) plots for Bayana volcanics and Khetri amphibolites.

Figure 13 Total alkali-silica diagram for Bayana volcanics and Khetri amphibolites.

Figure 14 Normative plagioclase composition versus Al₂O₃ (A) and normative colour index (B) diagrams classifying the Bayana volcanics as tholeiitic basalts.

Figure 15 FeO⁺/MgO versus TiO₂, SiO₂ and FeO⁺ variation diagrams of Bayana volcanics and Khetri amphibolites for their magma series classification.
Figure 16 $\text{AFM}(\Delta -\text{Na}_2\text{O}+\Delta\text{H}_2\text{O})-\text{Fe}^{2+}(\text{M}+\text{Mno})$ ternary diagram of Bayana volcanics and Khetri amphibolites showing a generally tholeiitic affinity of these rocks.

Figure 17 Jensen's cation ternary plot showing compositional variation of Bayana volcanics and Khetri amphibolites.

Figure 18 Nb/Y versus Zr/TiO$_2$ variation diagram for Bayana volcanics and Khetri amphibolites showing their sub-alkaline nature.

Figure 19 Zr/P$_2$O$_5$ versus Nb/Y variation diagram showing tholeiitic nature of Bayana volcanics and Khetri amphibolites.

Figure 20 Zr versus P$_2$O$_5$ (A) and Zr/P$_2$O$_5$ versus TiO$_2$ (B) variation diagrams suggesting tholeiitic affinity for Bayana volcanics and Khetri amphibolites.

Figure 21 Nb versus TiO$_2$ variation diagram illustrating tholeiitic affinity of Bayana volcanics and Khetri amphibolites.

Figure 22 $\text{Tix}10^{-3}$ versus V plot for Bayana volcanics and Khetri amphibolites showing their tholeiitic nature.

Figure 23 $Y(Y+Zr)-T(TiO_2x100)-C(Cr)$ ternary diagram attesting tholeiitic nature of Bayana volcanics and transitional nature of Khetri amphibolites.

Figure 24 $\text{Tix}/100-\text{Zr-Yx3}$ tectonomagmatic discrimination
Figure 25 Y versus Cr bivariant diagram indicating a volcanic arc basalt affinity of Khetri amphibolites.

Figure 26 Zr versus Zr/Y bivariant diagram showing within plate character of Bayana volcanics and island arc affinity of Khetri amphibolites.

Figure 27 Zr versus Ti x 10^-3 binary diagram indicating Mid-oceanic ridge basalts (MORB) affinity of Bayana volcanics and arc affinity of Khetri amphibolites.

Figure 28 Ta/Yb versus Ce/Yb plot classifying the Bayana volcanics as within plate basalt and Khetri amphibolites as arc basalt.

Figure 29 La/Nb versus Y diagram distinguishing Bayana volcanics as continental flood basalt and Khetri amphibolites as island arc basalt.

Figure 30 MORB-normalized spidergrams of Bayana volcanics (A) and Khetri amphibolites (B).

Figure 31 Primordial mantle (PM)- normalized spidergrams of Bayana volcanics (A) and Khetri amphibolites (B).

Figure 32 MORB-normalized incompatible multi-element diagram for Khetri amphibolites compared with basaltic rocks occurring in subduction related
tectonic settings (A) and with similar rocks of south Delhi fold belt (B).

Figure 33 MORB-normalized incompatible element spidergram showing differences in LILE/HFSE ratio in Bayana volcanics and Khetri amphibolites of Kolihan and Madhan-kudhan areas.

Figure 34 Binary ratio - ratio plots (A) Zr/Y versus Y/Nb and (B) Zr/Y versus Ce/Yb for Bayana volcanics.

Figure 35A Ce versus Nd bivariant diagram for Bayana volcanics.

Figure 35B La versus Ce covariation diagram for Bayana volcanics.

Figure 36 Th versus La plots for Bayana volcanics.

Figure 37 Plots of calculated [Fe] versus [Mg] for Bayana volcanics.

Figure 38 Zr versus Nb diagram showing transitionally enriched nature of Bayana volcanics.

Figure 39 Primordial mantle (PM) ratio-normalized spidergrams for Bayana volcanics.

Figure 40 Primordial mantle (PM) - normalized incompatible element ratio patterns for average Bayana volcanics compared with basaltic rocks from different tectonic settings.

Figure 41 Primordial mantle (PM)-normalised multi-element patterns of Bayana volcanics compared with those
of (A) Proterozoic north Indian mafic rocks and (B) Proterozoic dykes and continental flood basalts of the world and (C) those of mafic rocks occurring in different tectonic settings, post Archaean terrestrial shale (PATS) and Archaean crust.

Figure 42 Cr versus Yb and La variation diagrams for Bayana volcanics suggesting the role of clinopyroxene in their genesis.

Figure 43 La versus Yb concentration of Bayana volcanics compared to batch non-modal melting trends and fractional crystallization trends.

Figure 44 Chondrite normalised REE patterns of the calculated source for sample 5 (A), compared with REE patterns of actual samples of Bayana volcanics (B).

Figure 45 Variation diagram showing plots of various elements against FeO^t for Bayana volcanics.

Figure 46 MgO.CaO versus TiO_2 and FeO^t plots of Bayana volcanics suggesting combined effect of olivine and clinopyroxene involvement in their evolution.

Figure 47 Si/Zr versus (Fe+Mg+Mn)/Zr cation ratio diagram suggesting the role of clinopyroxene in the evolution of Bayana volcanics.

Figure 48 Zr versus TiO_2 and Y variation diagrams of Bayana
volcanics suggesting distinct combination of olivine and clinopyroxene or olivine-clinopyroxene-plagioclase as crystallizing phases in different proportions.

Figure 49 Zr versus Ni variation diagram of Bayana volcanics suggesting fractionation of clinopyroxene (Cpx) and olivine (Ol) in different proportions.

Figure 50 Incompatible trace element ratios versus incompatible trace element abundances variation diagrams of Bayana volcanics for assessing the role of partial melting in the genesis.

Figure 51 Incompatible trace element ratios versus compatible element abundances variation diagrams of Bayana volcanics for assessing role of fractional crystallization in their evolution.

Figure 52 Ta/Yb versus Th/Yb plot for Bayana volcanics and Khetri amphibolites.