CHAPTER-VI

MATRIX TRANSFORMATIONS OF SEQUENCES OF σ-BOUNDED VARIATION
6.1. **Definitions and Notations:**

In addition to the notations and definitions given in the preceding chapters, we follow the following:

We know that (see Schaefer [58]),

\[\sigma_c := \left\{ x : \lim_{m} t_{mn} (x) \text{ exists, uniformly in } n \right\}, \]

where

\[t_{mn}(x) = \frac{1}{m+1} \sum_{j=0}^{m} T^j x_n. \]

For \(m,n \geq 0 \), put

\[\psi_{mn}(x) = t_{mn}(x) - t_{m-1,n}(x). \]

When \(m \geq 1 \), we have

\[\psi_{mn}(x) = \frac{1}{m(m+1)} \left[m \sum_{j=0}^{m} T^j x_n - (m+1) \sum_{j=0}^{m-1} T^j x_n \right] \]

\[= \frac{1}{m(m+1)} \left[m T^m x_n - (x_n + T x_n + \ldots + T^{m-1} x_n) \right] \]

\[= \frac{1}{m(m+1)} \sum_{j=1}^{m} j[T^j x_n - T^{j-1} x_n]. \]
$= \frac{1}{m(m+1)} \sum_{j=1}^{m} j[x_{j\sigma}(n) - x_{j\sigma-1}(n)].$

Now, we define (See Mursaleen [39]):

$\text{BV}_\sigma := \left\{ x : \sum_{m} |\psi_{mn}(x)| < \infty, \text{ uniformly in } n \right\}.$

When $\sigma(n) = n+1$, the space BV_σ is same as the space $\hat{\text{BV}}$ of almost bounded variation (see Nanda [45]).

Also, we write

$\psi_{mn}(Ax) = \sum_{k} \sum_{j=1}^{m} j[a(\sigma(n),k) - a(\sigma^j(n),k)] x_k / m(m+1)$

$= \sum_{k} g(n,k,m) x_k,$

where

$g(n,k,m) = \frac{1}{m(m+1)} \sum_{j=1}^{m} j[a(\sigma(n),k) - a(\sigma^{j-1}(n),k)].$

6.2. INTRODUCTION:

It is natural to accept that σ-convergence must be related to some concept of BV_σ in the same vein as convergence is related to the concept of BV. Mursaleen [39], has characterized the classes of matrices $(\text{BV},\text{BV}_\sigma)$ and $(\ell_\infty,\text{BV}_\sigma)$. The object of this chapter is to determine the necessary and
sufficient conditions for the classes of matrices \((c_o, BV_o), (c(p), BV_o), (M_o(p), BV_o)\) and \((\ell_1, BV_o)\).

6.3. Here we state the following result which will be used in the proof of our Theorems.

Lemma 6.1. (See Mursaleen [39]):

\[BV_o \subset c\] and this inclusion is proper.

6.4. We prove the following theorems:

Theorem 6.1. \(A \in (c_o, BV_o)\) if and only if \((6.4.1), (6.4.2)\) hold.

\[(6.4.1) \quad \sum_{m} \sum_{k} |g(n,k,m)| \leq K, \text{ for all } n;\]

\[(6.4.2) \quad \lim_{m} g(n,k,m) = u_k, \text{ uniformly in } n, \text{ for all } k.\]

Proof. Necessity. Suppose that \(A \in (c_o, BV_o)\). Write

\[q_n(x) = \sum_{m} |\psi_{mn}(Ax)|.\]

Now \((q_n)\) is a sequence of continuous seminorms on \(c_o\) such that \(\sup_n q_n(x) < \infty\) for all \(x \in c_o\). Therefore, by Banach–Steinhaus theorem there exists a constant \(K > 0\), such that
\[q_n(x) \leq K \| x \| \quad \text{(for all } x \in c_0, \text{ for all } n). \]

For each \(r \in \mathbb{Z}^+ \), define a sequence

\[x = (x_k) = \begin{cases} \text{sgn } g(n,k,m), & 0 \leq k \leq r; \\ 0, & k > r. \end{cases} \]

Then \(x \in c_0, \| x \| = 1 \) and

\[q_n(x) = \sum_{m} \sum_{k=0}^{r} |g(n,k,m)|. \]

Therefore,

\[\sum_{m} \sum_{k} |g(n,k,m)| \leq K \quad \text{(for all } n). \]

Now, since \((c_0, BV_0) \subset (c_0, c)\) by Lemma 6.1, the condition (6.4.1) must hold (see Schaefer [58]).

SUFFICIENCY. Suppose that the conditions (6.4.1), (6.4.2) hold and \(x \in c_0 \). Now,

\[\sum_{m} |\psi_{mn}(Ax)| \leq \sum_{m} \sum_{k} |g(n,k,m)| (\sup_{k} |x_k|) \leq K \| x \|, \]

\(< \infty, \text{ uniformly in } n. \)
Now, \(Ax \in \sigma \text{BV}_\sigma \). Consequently \(Ax \in \sigma \) by Lemma 6.1, and therefore (see Schaefer [58])

\[
\lim \sum_{m,k} g(n,k,m) x_k = \Sigma u_k x_k,
\]

uniformly in \(n \).

This completes the proof of Theorem 6.1.

Theorem 6.2

(a) \(A \in (c(p), BV_\sigma) \) if and only if (6.4.3), (6.4.4), (6.4.5) hold.

(6.4.3) There exists an integer \(B > 1 \), such that

\[
\sum_{m,k} |g(n,k,m)|^{1/p_k} \leq K \quad \text{(for all } n),
\]

(6.4.4) \(\lim_{m,k} g(n,k,m) = u_k \), uniformly in \(n \), for each \(k \),

(6.4.5) \(\lim_{m,k} \sum g(n,k,m) = u \), uniformly in \(n \).

(b) \(A \in (c(p), BV_\sigma ; P) \) if and only if (6.4.3), (6.4.4) with \(u_k = 0 \), for each \(k \) and (6.4.5) with \(u = 1 \), hold.

Proof. (a). **Necessity.** Suppose that \(A \in (c(p), BV_\sigma) \).

Since \((c(p), BV_\sigma) \subset (c(p), c) \), (6.4.4) and (6.4.5) must hold [2].
Put
\[f_n(x) = \sum_m |\psi_{mn}(Ax)|. \]

Since \((c(p),BV_\sigma)^0(c_0(p),BV_\sigma), \{f_n\}\) is a sequence of continuous linear functionals on \(c_0(p)\) such that \(\sup_n f_n(x) < \infty\), therefore, by uniform boundedness principle, for \(0 < \delta < 1\), there exists a closed sphere \(S_\delta[0] \subset c_0(p)\) and a constant \(K\) such that, for every \(x \in S_\delta[0]\),
\[(6.4.6) \quad f_n(x) \leq K \quad (\text{for all } n, \text{ for all } x \in c(p)).\]

In particular, put
\[x_k = \begin{cases}
\delta^{K/p} & \text{sgn } g(n,k,m), 0 \leq k \leq r; \\
0 & k > r,
\end{cases} \]
in (6.4.6), where \(r\) is arbitrary. Then the condition (6.4.3) holds for \(B = \delta^{K} \).

Sufficiency. Suppose that the conditions (6.4.3), (6.4.4), (6.4.5) hold and \(x \in c(p)\). Then, there exists \(\ell \in c\), such that \(|x_k - \ell|^{p_k} \to 0\) \((k \to \infty)\). Hence, for a given \(0 < \varepsilon < 1\), there exists an integer \(k_0\) such that, for all \(k > k_0\),
and therefore, for $k > k_0$,

$$\frac{1}{p_k} \left| x_k - \ell \right| < B \left| x_k - \ell \right|, \quad \left(\frac{\varepsilon}{(K+1)} \right)^{M/p_k} < \frac{\varepsilon}{K+1},$$

where $M = \max \{1, \sup_k p_k\}$.

Therefore, we have

$$\sum_m |\psi_{mn}(Ax)| = \sum_m \left| \sum_k g(n,k,m)x_k \right| = \sum_m \left| \sum_k g(n,k,m)(x_k - \ell + \ell) \right|$$

$$(6.4.7) \quad \leq \sum_m \left| \sum_k g(n,k,m)(x_k - \ell) \right| + \sum_m \left| \sum_k g(n,k,m) \ell \right|. $$

Now,

$$\sum_m \sum_{k > k_0} g(n,k,m) (x_k - \ell) \left| x_k - \ell \right| B^{1/p_k} \quad - \frac{1}{p_k} \quad \frac{1}{p_k}$$
(6.4.8) \[\sum_{m} \sum_{k}^{\frac{\varepsilon}{K+1}} |g(n,k,m)| B^{-1/p_k} \]

and

\[\sum_{m} |\sum_{k} g(n,k,m)| \ell B^{-1/p_{k}^{1/p_{k}}} \]

\[\leq B^{1/\ell} \]

(6.4.9) \[\leq B \]

\[\leq K \]

\[< \infty, \text{ uniformly in } n, \]

where \(\inf_{k} p_k = \Theta \) and \(0 < p_k \leq 1 \).

Hence, combining (6.4.7), (6.4.8) and (6.4.9) we have

\[\sum_{m} |\psi_{mn}(Ax)| < \infty, \text{ uniformly in } n. \]

Now, \(Ax \in BV_{g} \) and consequently \(Ax \in c \). Therefore, we have [2],

\[\lim_{m} \sum_{k} g(n,k,m) x_{k} = \ell u + \sum_{k} u_{k} (x_{k} - \ell), \]

uniformly in \(n \).

Proof of (b) is immediate if we observe that \(u_{k} = 0 \), for each \(k \), and \(u = 1 \).

This completes the proof of Theorem 6.2.
COROLLARY 6.1. \(A \in (c_0(p), BV_\sigma) \) if and only if (6.4.3) and (6.4.4.) hold.

PROOF. Since \(\ell = 0 \) in this case the proof is immediate.

THEOREM 6.3. \(A \in (M_0(p), BV_\sigma) \) if and only if (6.4.10) and (6.4.11) hold.

(6.4.10) For every \(N > 1 \),
\[
\sum_{m} \sum_{k} \frac{1}{p_k} |g(n,k,m)| N < \infty, \text{ uniformly in } n.
\]

(6.4.11) \(\lim_{m} g(n,k,m) = u_k, \text{ uniformly in } n, \text{ for each } k. \)

PROOF. NECESSITY. Suppose that \(A \in (M_0(p), BV_\sigma) \). Since \((M_0(p),BV_\sigma) \subseteq (M_0(p),c) \) the condition (6.4.11) must hold [38]. If (6.4.10) is not true, then \(B = (b_{nk}) = (a_{nk} N 1/p_k) \notin (M_0(p), BV_\sigma) \) for some integer \(N > 1 \). So, there exists \(x \in M_0(p) \) such that \(Bx \notin BV_\sigma \). Now, \(y = (y_k) = (x_k N 1/p_k) \in M_0(p) \), but \(Ay = Bx \notin BV_\sigma \), which contradicts the fact that \(A \in (M_0(p), BV_\sigma) \). Hence, (6.4.10) is true.

SUFFICIENCY. Suppose that the conditions (6.4.10), (6.4.11) hold and \(x \in M_0(p) \). Then,
\[\sum_{m,k} \left| g(n,k,m) x_k \right|^\frac{1}{p_k} \leq \sum_{m,k} \left| g(n,k,m) \right| \left| x_k \right|^N < \infty. \]

Now, \(Ax \in BV_\sigma \) and consequently \(Ax \in c_0 \), by Lemma 6.1. Therefore, we have (see Mursaleen [38])

\[\lim_{m,k} \sum_{n} g(n,k,m) x_k = \sum_{k} u_k x_k, \]

uniformly in \(n \).

This completes the proof of Theorem 6.3.

Theorem 6.4. \(A \in (\ell_2, BV_\sigma) \) if and only if

(6.4.12) \(\sum_{m,k} \left| g(n,k,m) \right| \leq \infty \), for all \(n \),

(6.4.13) \(\lim_{m} g(n,k,m) = u_k \), uniformly in \(n \), for each \(k \).

Proof. Sufficiency and Necessity of (6.4.13) are trivial. The necessity of (6.4.12) can be obtained by an analysis similar to Theorem 6.3.