2.1 INTRODUCTION

Goyal [37], has defined the modified Laguerre polynomial of degree \(m \) as follows:

\[
L_{\alpha, \beta, n, m}(x) = \frac{\beta^m(n)_m}{m!} \, _1F_1[-m; n; ax/\beta] .
\]

Singh and Bala [83] utilized Weisner’s [105] group-theoretic method of obtaining generating functions in the case of modified Laguerre polynomials, by giving suitable interpretation to index \(m \), in order to derive the elements of Lie algebra.

Further Jahan [53] in her Ph.D. Thesis considered more general polynomials \(L_{\alpha, \beta, \gamma, n, m}(x) \) with the name generalized Laguerre-Hermite polynomials, which she defined as

\[
(\gamma - \beta t)^{-n} \exp\left(-\frac{\alpha xt}{\gamma - \beta t}\right) = \sum_{m=0}^{\infty} L_{\alpha, \beta, \gamma, n, m}(x) \, t^m,
\]

where \(m \) is a positive integer and the other parameters are unrestricted in general.

The polynomials \(L_{\alpha, \beta, \gamma, n, m}(x) \) contain the modified Laguerre polynomials \(L_{\alpha, \beta, n, m}(x) \) of Goyal [37], when \(\gamma = 1 \).

Jahan [53] established a fundamental relationship between special linear group \(SL(2) \) and the generalized Laguerre-Hermite polynomials \(L_{\alpha, \beta, \gamma, n, m}(x) \).
Sharma [82] has obtained certain generating functions for modified Laguerre polynomials by Lie-theoretic approach. Group-theoretic origins of generating functions were obtained independently by Das, Sarama [22], Manocha [64], Ghosh, Bandana [36], Chongdar [20], de Oliveira and Capelas [23], Chatterjea and Chakrabarty [18], Chakrabarty [16] and many other research workers. The details of methods and ideas leading to results on special functions are based on the approach of Miller [67] and Weisner [105], [106], [107]. In Sections 2.3 and 2.4, we follow the approach of Miller and obtain generating functions of modified Laguerre polynomials by extending the realizations of $\hat{\uparrow}_\omega, u$ and \downarrow_ω, u on V to local multiplier representations of $G(0,1)$ defined on \mathcal{F} where \mathcal{F} is the complex vector space of all functions of x and y analytic in some neighbourhood of the point $(0,0)$. Many results of Miller [67], Weisner [105], Jahan [53], Manocha [95], Das, Sarama [22] and Sharma [82] follow as special cases of our results. Generating relations of modified Laguerre polynomials are of interest due to its connections and reductions to a number of other special functions which are well-known. For convenience, we note the following important special cases of $L_{\alpha, \beta, m, n}(x)$.

(a)
\begin{equation}
L_{1,1,\alpha+1,n}(x) = L_n^{(\alpha)}(x),
\end{equation}

where $L_n^{(\alpha)}(x)$ is the associated Laguerre polynomial (1.5.26), [79].

(b)
\begin{equation}
L_{1,1,1/2,n}(x^2) = (-1)^n \frac{H_{2n}(x)}{2^{2n} n!}
\end{equation}

and
(2.1.5) \(L_{1,1,3/2,n}(x^2) = (-1)^n \frac{H_{2n+1}(x)}{2^{2n} n!} \),

where \(H_{2n}(x) \) and \(H_{2n+1}(x) \) are the even and odd Hermite polynomials respectively (1.5.23), [79].

(c)

(2.1.6) \(L_{1,1,(\mu+1)/2,n}(x^2) = (-1)^n \frac{H_{2n}^{\mu}(x)}{n!} \),

and

(2.1.7) \(L_{1,1,(\mu+3)/2,n}(x^2) = (-1)^n \frac{H_{2n+1}^{\mu}(x)}{n!} \),

where \(H_{2n}^{\mu}(x) \) and \(H_{2n+1}^{\mu}(x) \) are the generalized even and odd Hermite polynomials [101], [19] defined as

\[
(2.1.8) \quad H_{2n}^{\mu}(x) = \sum_{k=0}^{n} \binom{n+\mu-1/2}{n-k} (-1)^{n-k} \frac{2^{2n} n!}{k!} x^{2k} \]

and

\[
(2.1.9) \quad H_{2n+1}^{\mu}(x) = \sum_{k=0}^{n} \binom{n+\mu+1/2}{n-k} (-1)^{n-k} \frac{2^{2n+1} n!}{k!} x^{2k+1} \]

(d)

(2.1.10) \(L_{-1,4u,\nu+1/2,n}(x^2) = P_{n,\nu}(x,u)/n! \),

where \(P_{n,\nu}(x,u) \) is the generalized Heat polynomial defined by Haimo [45] and Bragg [11]

\[
(2.1.11) \quad P_{n,\nu}(x,u) = \sum_{k=0}^{n} 2^{2k} \left(\binom{n}{k} \frac{\Gamma(\nu+n+1/2)}{\Gamma(\nu+n-k+1/2)} \right) x^{2n-2k} u^k \]
where \(S_n(x) \) is Schultz-Piszachich polynomial (1.5.28), [81] and \(y_n(x) \) is simple Bessel polynomial (1.5.32), [60], [79].

where Shively's pseudo-Laguerre polynomial \(R_n(a,x) \) [79] is defined in terms of \(_1F_1\) as

\[
(2.1.14) \quad R_n(a,x) = \frac{(a)_{2n}}{n!(a)_n} \, _1F_1[-n; a+n; x] .
\]

The recurrence relations for the modified Laguerre polynomials \(L_{\alpha, \beta, n, m}(x) \) are (cf. [83], p. 512(1.1 and 1.2))

\[
(2.1.15) \quad \frac{d}{dx} L_{\alpha, \beta, n, m}(x) \\
= \frac{1}{x} \left\{ \beta (1-n-m) L_{\alpha, \beta, n, m-1}(x) + mL_{\alpha, \beta, n, m}(x) \right\}
\]

\[
(2.1.16) \quad \frac{d}{dx} L_{\alpha, \beta, n, m}(x) \\
= \frac{1}{\beta x} \left\{ \left(\frac{\beta (-n-m)+\alpha x}{\beta} \right) L_{\alpha, \beta, n, m}(x) + \left(m+1 \right) L_{\alpha, \beta, n, m+1}(x) \right\} ,
\]

and the differential equation for \(L_{\alpha, \beta, n, m}(x) \) is (cf. [83], p. 512(1.3))

\[
(2.1.17) \quad \left[x \frac{d^2}{dx^2} + \left(n - \frac{\alpha x}{\beta} \right) \frac{d}{dx} + \frac{\alpha m}{\beta} \right] L_{\alpha, \beta, n, m}(x) = 0 .
\]
We note the following differential recurrence relations for the polynomials $L_{\alpha, \beta, n-m, m}(x)$

\begin{align*}
& (2.1.18) \quad \frac{d}{dx} L_{\alpha, \beta, n-m, m}(x) = -\beta L_{\alpha, \beta, n-(m-1), m-1}(x), \\
& (2.1.19) \quad \frac{d}{dx} L_{\alpha, \beta, n-m, m}(x) \\
& \quad = \frac{(m+1)}{\alpha x} L_{\alpha, \beta, n-(m+1), m+1}(x) + \left\{ \frac{1+\beta(1+m-n)}{\alpha x} \right\} L_{\alpha, \beta, n-m, m}(x).
\end{align*}

The differential equation for $L_{\alpha, \beta, n-m, m}(x)$ is given by

\begin{equation}
(2.1.20) \quad \left[\frac{\alpha x}{\beta} \frac{d^2}{dx^2} + \left(n-m-\frac{\alpha x}{\beta} \right) \frac{d}{dx} + m \right] L_{\alpha, \beta, n-m, m}(x) = 0.
\end{equation}

2.2 REALIZATION OF $^{\uparrow} \omega, \mu$ AND GENERATING FUNCTIONS

As we know that $S(0,1)$ essentially coincides with the Lie algebra of the local Lie group $G(0,1)$ given by

$$
G(0,1) = \begin{cases}
\begin{bmatrix}
1 & c & e^\tau & a & \tau \\
0 & e^\tau & b & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, & a, b, c, \tau \in \mathbb{C}.
\end{cases}
$$

The irreducible representation $^{\uparrow} \omega, \mu$ (cf. [67], p. 85) of $S(0,1)$ is defined for each $\omega, \mu \in \mathbb{C}$ such that $\mu \neq 0$. The spectrum S of $^{\uparrow} \omega, \mu$ is

$$
S = \{-\omega+n:n \text{ a nonnegative integer}\}
$$

and there is a basis $\{f_m, m \in S\}$ for the representation space V with the properties
\[
\begin{align*}
J^3 f_m &= m f_m, \\
E f_m &= \mu f_m, \\
J^+ f_m &= \mu f_{m+1}, \\
J^- f_m &= (m+\omega) f_{m-1}, \\
C_{0,1} f_m &= (J^+ J^- - E J^3) f_m = \mu \omega f_m.
\end{align*}
\]

The commutation relations satisfied by the operators are

\[
\left[J^3, J^\pm \right] = \pm J^\pm, \quad \left[J^+, J^- \right] = -E, \quad \left[J^\pm, E \right] = \left[J^3, E \right] = 0.
\]

We can extend the realization of \(\tilde{\omega}, \mu \) defined on \(V \) to a local multiplier representation of \(G(0,1) \) defined on \(\mathcal{F} \), where \(\mathcal{F} \) is the complex vector space of all functions of \(x \) and \(y \) analytic in some neighbourhood of the point \((x^0, y^0) = (0,0) \).

Let us introduce the first order linearly independent differential operators \(J^3, J^+, J^- \) and \(E \) each of the form

\[
A_1(x,y) \frac{\partial}{\partial x} + A_2(x,y) \frac{\partial}{\partial y} + A_3(x,y)
\]

such that

\[
\begin{align*}
J^3 \left[y^m x^{n-m-1} L_\alpha, \beta, n-m, m(x) \right] &= a_m y^m x^{n-m-1} L_\alpha, \beta, n-m, m(x), \\
J^+ \left[y^m x^{n-m-1} L_\alpha, \beta, n-m, m(x) \right] &= b_m y^{m+1} x^{n-m-1} L_\alpha, \beta, n-(m+1), m(x), \\
J^- \left[y^m x^{n-m-1} L_\alpha, \beta, n-m, m(x) \right] &= c_m y^{m-1} x^{n-m-1} L_\alpha, \beta, n-(m-1), m(x), \\
E \left[y^m x^{n-m-1} L_\alpha, \beta, n-m, m(x) \right] &= y^m x^{n-m-1} L_\alpha, \beta, n-m, m(x),
\end{align*}
\]

where \(a_m, b_m \) and \(c_m \) are expressions in \(m \) which are independent of \(x \) and \(y \), but not necessarily of \(\alpha, \beta \) and \(n \). Each \(A_i(x,y) \),
i=1,2,3, on the other hand, is an expression in x and y which is independent of m but not necessarily of \(\alpha, \beta \) and n.

Using (2.2.3) and recurrence relations (2.1.18) and (2.1.19), we get the following operators

\[
J^3 = \frac{\partial}{\partial y},
\]

\[
J^+ = \alpha y \frac{\partial}{\partial x} + (\alpha - \beta) x^{-1} y^2 \frac{\partial}{\partial y} + (\alpha - \beta) (1 - n) x^{-1} y - \alpha y,
\]

\[
J^- = \frac{-xy^{-1}}{\beta} \frac{\partial}{\partial x} - \frac{1}{\beta} \frac{\partial}{\partial y} + \frac{(n-1)}{\beta} y^{-1},
\]

\[
E = 1.
\]

Commutation relations of these operators are identical with (2.2.2).

To construct a realization of \(\uparrow_{\omega, \mu} \) in terms of the operators (2.2.4), we find nonzero functions \(f_m(x,y) = y^m Z_m(x) \), such that equations (2.2.1) are valid for all \(m \in S \). Following Miller ([67], Section 4.6), the complex constant \(\omega \) is clearly irrelevant as far as the study of the special functions \(Z_m \) is concerned, since we could remove it by relabeling the functions \(Z_m = Z_{m+\omega} \). Hence, without loss of generality we can assume \(\omega = 0 \). Also, there is no loss of generality for special function theory if we set \(\mu = 1 \).

In terms of the functions \(Z_m(x) \) relations (2.2.1) reduce to

\[
\left[\frac{\alpha}{\beta} + \frac{(\alpha - \beta) (m-n+1) x^{-1}}{\beta} \right] Z_m(x) = Z_{m+1}(x),
\]

\[
\left[\frac{-x}{\beta} + \frac{(n-m-1)}{\beta} \right] Z_m(x) = m Z_{m-1}(x).
\]
If we choose $Z_m(x) = m! \, x^{n-m-1} \log \alpha \beta n-m \alpha(x)$, $m \in S$, then the functions $f_m(x,y) = y^{m} Z_m(x)$, $m \in S$, form a basis for a realization of the representation $\Upsilon_{0,1}$ of $\mathcal{G}(0,1)$. This realization can be extended to a local multiplier representation of $G(0,1)$ defined on \mathcal{F}.

According to Theorem (1.4.1) the operators (2.2.4) generate a Lie algebra, isomorphic to $\mathcal{G}(0,1)$, which is the algebra of generalized Lie derivatives of a local multiplier representation T of $G(0,1)$ acting on \mathcal{F}.

Now we proceed to compute the multiplier representation of $G(0,1)$. From the theorem, the action of the one-parameter groups $\exp(b \mathcal{J}^+)$, $\exp(c \mathcal{J}^-)$, $\exp(\tau \mathcal{J}^0)$ and $\exp(a \mathcal{S})$, $a, b, c, \tau \in \mathcal{F}$, are obtained by integrating the following differential equations.

\[
\frac{d}{db} x(b) = \alpha y(b), \quad \frac{d}{db} y(b) = (\alpha - \beta) x^{-1}(b) y^2(b), \quad \frac{d}{db} \nu(b) = \nu(b) \left\{ (\alpha - \beta) (1-n) x^{-1}(b) y(b) - \alpha y(b) \right\},
\]

\[
\frac{d}{dc} x(c) = \frac{-x(c)y^{-1}(c)}{\beta}, \quad \frac{d}{dc} y(c) = \frac{1}{\beta}, \quad \frac{d}{dc} \nu(c) = \frac{\nu(c)(n-1)y^{-1}(c)}{\beta},
\]

\[(2.2.6)\]

\[
\frac{d}{d\tau} x(\tau) = 0, \quad \frac{d}{d\tau} y(\tau) = y(\tau), \quad \frac{d}{d\tau} \nu(\tau) = 0,
\]

\[
\frac{d}{da} x(a) = 0, \quad \frac{d}{da} y(a) = 0, \quad \frac{d}{da} \nu(a) = \nu(a),
\]

subject to conditions $x(0) = x^0$, $y(0) = y^0$, $\nu(0) = 1$, where ν is multiplier of the representation.

Thus, if $f \in \mathcal{F}$ is analytic in a neighbourhood of (x^0,y^0), then the values of the multiplier representations of $\exp(b \mathcal{J}^+)$, $\exp(c \mathcal{J}^-)$, $\exp(\tau \mathcal{J}^0)$ and $\exp(a \mathcal{S})$ are given by
\[
\begin{align*}
T(\exp(b^+) f)(x^0, y^0) &= \exp\left\{ x^0 \left[1 - \left(1 + \frac{\beta y^0}{x^0} \right) \frac{\alpha}{\beta} \right] \right\} \left[1 + \frac{\beta y^0}{x^0} \right] \left(\alpha - \beta \right) (1 - n) \\
&\quad \cdot f \left(x^0 \left[1 + \frac{\beta y^0}{x^0} \right] \frac{\alpha}{\beta}, y^0 \left[1 + \frac{\beta y^0}{x^0} \right] \left(\alpha - \beta \right) / \beta \right),
\end{align*}
\]

\[
\begin{align*}
T(\exp(c^-) f)(x^0, y^0) &= \left(\frac{1 - c}{\beta y^0} \right)^{1-n} f \left(x^0 \left[1 - \frac{c}{\beta y^0} \right], y^0 - \frac{c}{\beta} \right),
\end{align*}
\]

(2.2.7)

\[
\begin{align*}
T(\exp(\tau^0 f)(x^0, y^0) &= f(x^0, y^0 e^{\tau}),
\end{align*}
\]

\[
\begin{align*}
T(\exp(a^s f)(x^0, y^0) &= \exp(a) f(x^0, y^0).
\end{align*}
\]

If \(g \in G(0,1) \) has coordinates \((a,b,c,\tau)\), we have

\[
g = (\exp(b^+)) (\exp(c^+)) (\exp(\tau^0)) (\exp(a^s)),
\]

and the operator \(T(g) \) acting on \(f \in \mathfrak{F} \) is given by

\[
\begin{align*}
T(g) f(x,y) &= T\left[(\exp(b^+)) (\exp(c^+)) (\exp(\tau^0)) (\exp(a^s)) f \right](x,y) \\
&= \left[T(\exp(b^+)) T(\exp(c^+)) T(\exp(\tau^0)) T(\exp(a^s)) f \right](x,y) \\
&= \exp \left[a + x \left(1 - \frac{\beta y}{x} \right) \frac{\alpha}{\beta} \right] \left[1 + \frac{\beta y}{x} \right] (\alpha - \beta) / \beta - \frac{c}{\beta y} \right]^{1-n} \\
&\quad \cdot f \left(x \left(1 + \frac{\beta y}{x} \right) \left[1 + \frac{\beta y}{x} \right] (\alpha - \beta) / \beta - \frac{c}{\beta y} \right), e^{\tau} \left(y \left[1 + \frac{\beta y}{x} \right] (\alpha - \beta) / \beta - \frac{c}{\beta y} \right).
\end{align*}
\]

Now the matrix elements of this representation with respect to the analytic basis \(\{ f_m(x,y) = y^m z_m(x) \} \), are the functions \(A_{\ell k}(g) \) defined by
\[T(g) f_k(x, y) = \sum_{\ell=0}^{\infty} A_{\ell k}(g) f_\ell(x, y), \]
\[g \in g(0,1), \ k = 0,1,2,\ldots, \]

or, (from (2.2.8))

\[(2.2.10) \]
\[
\begin{align*}
&= \sum_{\ell=0}^{\infty} A_{\ell k}(g) \ell! x^{k-\ell} L_{\ell+1}^\alpha, \beta, n-k, k(x, y) y^\ell , \\
&= k! \frac{x^{k-\ell} L_{\ell+1}^\alpha, \beta, n-k, k(x, y) y^\ell}{x^{\ell} L_{\ell+1}^\alpha, \beta, n-k, k(x, y) y^\ell}, \\
&= k, \ell = 0,1,2,\ldots.
\end{align*}
\]

The matrix elements \(A_{\ell k}(g) \) are to be determined by expanding the left-hand side of (2.2.10) in a power series in \(y \) and then computing the coefficient of \(y^\ell \). We discuss a very few special cases of the above equation.

For \(\alpha = \beta = 1 \) and \(n = q + 1 \), expression (2.2.10) reduces to

\[
(2.2.11) \]
\[
\begin{align*}
&= \sum_{\ell=0}^{\infty} B_{\ell k}(g) \ell! x^{k-\ell} L_{\ell+1}^1(q-k, k(x, y) y^\ell) , \\
&= k, \ell = 0,1,2,\ldots.
\end{align*}
\]

which gives us (cf. [67], p. 87(4.26)),

\[
(2.2.12) \]
\[
B_{\ell k}(g) = \exp(a+\tau k-b y) c^{k-\ell} L_{\ell}^{1-\ell}(-bc),
\]
\[k, \ell = 0.\]

Putting this value of \(B_{\ell k}(g) \) in (2.2.11), we get (cf. [67], p. 112(4.94))
\[(2.2.13) \quad k!e^{-by\left(1+\frac{by}{x}\right)}q^{-k}L_k^{(q-k)}\left[x(1+\frac{by}{x})\left(1-\frac{c}{y}\right)\right]y^k\]
\[= \sum_{\ell=0}^{\infty} c^{k-\ell}\ell!\left(k^\ell\right)\left(-bc\right)\ell!x^{k-\ell}L_{\ell}^{(q-\ell)}(x)y^\ell, \quad k = 0,1,2,\ldots .\]

The above equation is valid for all \(b, c, y, x, q \in \mathbb{R}\) such that \(|by/x| < 1\).

Making use of the limits (cf. [67], p. 88(4.29))

\[c^{nL_{\ell}^{(n)}(bc)}|_{c=0} = \begin{cases} 0 & \text{if } n > 0, \\ \frac{(-b)^{-n}}{(-n)!} & \text{if } n \leq 0, \end{cases}\]

\[(2.2.14)\]

\[c^{nL_{\ell}^{(n)}(bc)}|_{b=0} = \begin{cases} \binom{n+\ell}{n}c^n & \text{if } n = 0, \\ 0 & \text{if } n < 0, \end{cases}\]

we can derive some simple consequences of (2.2.13) (cf. [67], pp. 112-113). For \(c = 0, y = x\),

\[(2.2.15) \quad e^{-bx(1+b)}q^{+k}L_k^{(q)}[x(1+b)] = \sum_{\ell=0}^{\infty} b^\ell \binom{\ell+k}{\ell}L_{\ell}^{(q-\ell)}(x), \quad |b| < 1 ,\]

and, setting \(k = 0\) in this expression we obtain a well-known generating function for the associated Laguerre polynomials (cf. [67], p. 87(4.27)).

\[(2.2.16) \quad e^{-bx(1+b)}q = \sum_{\ell=0}^{\infty} b^\ell L_{\ell}^{(q-\ell)}(x), \quad q \in \mathbb{R}, \quad |b| < 1 .\]
When \(b = 0 \), \(y = x \), equation (2.2.13) becomes

\[
(2.2.17) \quad L_k^{(q)}(x-c) = \sum_{\ell=0}^{k} \frac{c^\ell}{\ell!} L_k^{(q+\ell)}(x).
\]

2.3 REALIZATION OF \(\downarrow_{\omega,\mu} \) AND GENERATING FUNCTIONS

As was stated in Theorem (1.4.3), the irreducible representation \(\downarrow_{\omega,\mu} \) of \(\mathfrak{g}(0,1) \) is defined for each \(\omega, \mu \in \mathfrak{g} \) such that \(\mu \neq 0 \). The spectrum of this representation is the set

\[S = \{-\omega-1-n : n \text{ a nonnegative integer}\}, \]

and there is a basis \(\{f_m, m \in S\} \) for the representation space \(V \) such that

\[
\begin{align*}
J^3 f_m &= mf_m, \quad E f_m = -\mu f_m, \\
J^+ f_m &= -(m+\omega+1) f_{m+1}, \quad J^- f_m = \mu f_{m-1}, \\
C_0,1 f_m &= (J^+J^- - EJ^3) f_m = -\mu \omega f_m.
\end{align*}
\]

The commutation relations satisfied by the operators are (2.2.2).

As in Section 2.2, we can extend the realization of \(\downarrow_{\omega,\mu} \) defined on \(V \) to a local multiplier representation of \(G(0,1) \) defined on \(\mathfrak{g} \).

Let us introduce the first order linearly independent differential operators \(J^3, J^+, J^- \) and \(E \) each of the form

\[
A_1(x,y) \frac{\partial}{\partial x} + A_2(x,y) \frac{\partial}{\partial y} + A_3(x,y)
\]

such that
\[J^3 \left[y_{m}^{\alpha, \beta, n-m, m(x)} \right] = a_m y_{m}^{\alpha, \beta, n-m, m(x)} , \]

\[J^+ \left[y_{m}^{\alpha, \beta, n-m, m(x)} \right] = b_m y_{m+1}^{\alpha, \beta, n-(m+1), m+1(x)} , \]

\[J^- \left[y_{m}^{\alpha, \beta, n-m, m(x)} \right] = c_m y_{m-1}^{\alpha, \beta, n-(m-1), m-1(x)} , \]

\[E \left[y_{m}^{\alpha, \beta, n-m, m(x)} \right] = y_{m}^{\alpha, \beta, n-m, m(x)} , \]

where \(a_m, b_m \) and \(c_m \) are expressions in \(m \) which are independent of \(x \) and \(y \), but not necessarily of \(\alpha, \beta \) and \(n \). Each \(A_i(x, y), i=1,2,3 \), on the other hand, is an expression in \(x \) and \(y \) which is independent of \(m \) but not necessarily of \(\alpha, \beta \) and \(n \).

Using (2.3.2) and recurrence relations (2.1.18) and (2.1.19), we get the following operators

\[J^3 = \frac{\partial}{\partial y} , \]

\[J^+ = -\alpha xy \frac{\partial}{\partial x} + \beta y^2 \frac{\partial}{\partial y} - (\beta n - \alpha x - \beta) y , \]

\[J^- = \frac{y^{-1}}{\beta} \frac{\partial}{\partial x} , \]

\[E = 1 . \]

These operators satisfy the commutation relations (2.2.2).

To obtain a realization of \(J^\omega, J^\mu \) in terms of the operators (2.3.3), we find nonzero functions \(f_m(x,y) = y^m z_m(x) \), such that equations (2.3.1) are valid for all \(m \in S \). Just as in the previous section, it is easy to show that without loss of generality for special function theory we can assume \(\omega=0, \mu=1 \). Then, expressed in terms of the functions \(z_m(x) \), equations
(2.3.1) become the recursion relations

\[
\left\{ -\alpha x \frac{d}{dx} + \alpha x + \beta (m-n+1) \right\} Z_m(x) = -(m+1) Z_{m+1}(x),
\]

(2.3.4)

\[
\left(\frac{1}{\beta} \frac{d}{dx} \right) Z_m(x) = -Z_{m-1}(x).
\]

Now if we take \(Z_m(x) = L_{\alpha, \beta, n-m, m}(x) \), \(m \in S \), then the functions \(f_m(x,y) = y^m Z_m(x) \), \(m \in S \), form a basis for a realization of the representation \(\mathfrak{g}_{0,-1} \) of \(\mathfrak{g}(0,1) \). This realization of \(\mathfrak{g}(0,1) \) can be extended to a local multiplier representation of \(G(0,1) \). Now, proceeding exactly as in the previous section we compute the multiplier representation of \(G(0,1) \). The action of the one-parameter groups \(\exp(b\beta^+), \exp(c\beta^-), \exp(\tau\beta^3) \) and \(\exp(a\epsilon) \), \(a, b, c, \tau \in \mathbb{C}, \) are obtained by integrating the following differential equations

\[
\frac{d}{db} x(b) = -\alpha x(b) y(b), \quad \frac{d}{db} y(b) = \beta y^2(b), \quad \frac{d}{db} \nu(b) = \nu(b) \{\alpha x(b) + \beta - \beta n\} y(b),
\]

(2.3.5)

\[
\frac{d}{dc} x(c) = \frac{y^{-1}(c)}{\beta}, \quad \frac{d}{dc} y(c) = 0, \quad \frac{d}{dc} \nu(c) = 0,
\]

\[
\frac{d}{d\tau} x(\tau) = 0, \quad \frac{d}{d\tau} y(\tau) = y(\tau), \quad \frac{d}{d\tau} \nu(\tau) = 0,
\]

\[
\frac{d}{da} x(a) = 0, \quad \frac{d}{da} y(a) = 0, \quad \frac{d}{da} \nu(a) = \nu(a),
\]

58
with initial conditions \(x(0) = x^0, \ y(0) = y^0, \ v(0) = 1, \) where \(v \) is multiplier of the representation.

Thus, if \(f \in \mathcal{F} \) is analytic in a neighbourhood of \((x^0,y^0)\) then the values of the multiplier representations of \(\exp(b_j^+), \ \exp(c_j^-), \ \exp(\tau_j^3) \) and \(\exp(a\theta) \) are given by

\[
\begin{align*}
[T'_{\exp(b_j^+)}f](x^0,y^0) &= (1-\beta y^0)^{n-1} \exp\left(\frac{x^0-x^0(1-\beta y^0)\alpha/\beta}{1-\beta y^0}\right) f\left(x^0(1-\beta y^0)\alpha/\beta, \frac{y^0}{1-\beta y^0}\right), \\
[T'_{\exp(c_j^-)}f](x^0,y^0) &= f(x^0, y^0 e^\tau), \\
[T'_{\exp(\tau_j^3)}f](x^0,y^0) &= \exp(a) f(x^0, y^0).
\end{align*}
\] (2.3.6)

As mentioned in Section 2.2, if \(g \in G(0,1) \) has parameters \((a,b,c,\tau)\) then

\[g = \left[\exp(b_j^+)\right]\left[\exp(c_j^-)\right]\left[\exp(\tau_j^3)\right]\left[\exp(a\theta)\right].\]

Thus,

\[T'(g)f = T'_{\exp(b_j^+)} T'_{\exp(c_j^-)} T'_{\exp(\tau_j^3)} T'_{\exp(a\theta)} f,\]

for all \(f \in \mathcal{F}. \) Direct computation gives

\[
[T'_{g}f](x,y) = (1-\beta y)^{n-1} \exp\left(x - x (1-\beta y) \frac{\alpha/\beta + a}{\beta y}\right) f\left(x (1-\beta y) \alpha/\beta + \frac{c (1-\beta y)}{\beta y}, \frac{y e \tau}{1-\beta y}\right). \]

As in Section 2.2, the matrix elements of the operators
$T'(g)$ with respect to the basis vectors $\{f_m(x,y) = y^m z_m(x)\}$, are the functions $A_{\ell k}(g)$ defined by

$$
(2.3.8) \quad \left[T'(g) f_k \right](x,y) = \sum_{\ell=0}^{\infty} A_{\ell k}(g) f_\ell(x,y), \\
k = 0,1,2,\ldots,
$$

valid for all $g \in G(0,1)$, or, (from (2.3.7))

$$
(2.3.9) \quad (1-\beta y)^{n-k-1} \exp \left(x - x(1-\beta y) \alpha/\beta + a + \tau k \right) y^k \\
\cdot {}_1 F_1 \left[\begin{array}{c} -k; \\
1+\ell-k; \\
\end{array} \frac{-abc}{\beta} \right] \\
= \sum_{\ell=0}^{\infty} A_{\ell k}(g) y^\ell {}_1 F_1 \left[\begin{array}{c} x(1-\beta y) \alpha/\beta + \frac{c(1-\beta y)}{\beta y}; \\
\ell-k; \\
\end{array} \right], \\
|\beta y| < 1.
$$

To find $A_{\ell k}(g)$, we set $x = 0$, this enables us to arrive at

$$
(2.3.10) \quad A_{\ell k}(g) = \frac{\exp(a+\tau k)(-b)^{\ell-k}}{k!} \cdot {}_1 F_1 \left[\begin{array}{c} -k; \\
1+\ell-k; \\
\end{array} \frac{-abc}{\beta} \right],
$$

or, alternatively

$$
A_{\ell k}(g) = \exp(a+\tau k)(-b)^{\ell-k} {}_1 F_1 \left[\begin{array}{c} x(1-\beta y) \alpha/\beta + \frac{c(1-\beta y)}{\beta y}; \\
\ell-k; \\
\end{array} \right].
$$

Thus the generating function (2.3.9) becomes

$$
(2.3.11) \quad (1-\beta y)^{n-k-1} \exp \left(x - x(1-\beta y) \alpha/\beta \right) \\
\cdot {}_1 F_1 \left[\begin{array}{c} x(1-\beta y) \alpha/\beta + \frac{c(1-\beta y)}{\beta y}; \\
\ell-k; \\
\end{array} \right],
$$

60
The generating function (2.3.11) was obtained under the assumption that k is a nonnegative integer.

Now assuming that k and $n-k$ are not integers, say $k = \nu$ and $n - k = n - \nu$, the generating function emanating from (2.3.7) is

\[
\exp\left(x - x(1 - \beta y) \frac{\alpha}{\beta} \right) \left(1 - \beta y \right)^{n - \nu - 1}
= \sum_{m = -\infty}^{\infty} \frac{\Gamma(1 + \nu + m)}{\Gamma(1 + \nu)} L_{\alpha, \beta, n - \nu, \nu} \left(x (1 - \beta y) \frac{\alpha}{\beta} + \frac{c(1 - \beta y)}{\beta y} \right) (-\beta y)^m
\leq \sum_{m = -\infty}^{\infty} \frac{\Gamma(1 + \nu + m)}{\Gamma(1 + \nu)} L_{\alpha, \beta, n - (\nu + m), \nu + m} (x) \{\Gamma(1 + m)\}^{-1}
\left(-\beta y \right)^m,
\]

where

\[0 < |\beta| < |\beta b|^{-1}.
\]

Special cases

I. For $\alpha, \beta = 1, a = d, b = a, c = b, \tau = c, \ell = n$ and $n = \alpha + 1$, the generating function (2.3.11) reduces to (cf. [95], p. 343(23))

\[
(2.3.13) \quad \exp(ax) (a - bx) \frac{\alpha - k}{\beta} \left((1 - ay) \left(x + \frac{b}{y} \right) \right)
= \sum_{n=0}^{\infty} \frac{n!}{k!} L_n(a - n) (x) \{\Gamma(1 + n - k)\}^{-1} \left(-\beta y \right)^n
\leq \sum_{n=0}^{\infty} \frac{n!}{k!} L_n(a - n) (x) \{\Gamma(1 + n - k)\}^{-1} \left(-\beta y \right)^n,
\]

where

\[0 < |\beta| < |\alpha|^{-1}.
\]
II. Taking $\alpha, \beta = 1, \ a = d, \ b = a, \ c = b, \ \tau = c, \ m = n$ and $n = \alpha+1$, the generating function (2.3.12) gives us (cf. [95], p. 342(20))

\[
(2.3.14) \quad \exp(axy) (1-ay)^{\alpha-\nu} L^\nu_\nu(\alpha-\nu) \left[(1-ay) \left(x + \frac{b}{y} \right) \right]
\]

\[
= \sum_{n=-\infty}^{\infty} \frac{\Gamma(1+\nu+n)}{\Gamma(1+\nu)} L^\nu_\nu(\alpha-\nu-n)(x) \{ \Gamma(1+n) \}^{-1} \cdot \ _1F_1[-\nu;1+n;-ab](\operatorname{ay})^n,
\]

\[0 < |y| < |a|^{-1} .\]

III. Taking $c = 0$ and $y = -1$ in (2.3.12) we shall arrive at

\[
(2.3.15) \quad \exp\left(x-x(1+\beta b)\frac{\alpha}{\beta} \right) (1+\beta b)^{n-\nu-1} L_\alpha,\beta, n-\nu, \nu (x(1+\beta b)\frac{\alpha}{\beta})
\]

\[
= \sum_{m=0}^{\infty} \frac{(1+\nu)_m}{m!} L_\alpha,\beta, n-(\nu+m), \nu+m (x) b^m ,
\]

\[|\beta b| < 1 ,\]

which for $\alpha = \beta = 1, \ b = a, \ m = n$ and $n = \alpha+1$ gives us (cf. [95], p. 342(21))

\[
(2.3.16) \quad \exp(-ax) (1+a)^{\alpha-\nu} L^\nu_\nu(\alpha-\nu) (x(1+a))
\]

\[
= \sum_{n=0}^{\infty} \frac{(1+\nu)_n}{n!} L^\nu_\nu(\alpha-\nu-n)(x) a^n , \ |a| < 1 .
\]

IV. Taking $b = 0, \ y = -1$, and using the limit (cf. [67], p. 84(4.16))
where n is an integer, equation (2.3.12) becomes

\begin{equation}
(2.3.18) \quad L_{\alpha, \beta, n-\nu, \nu}^{(n)} \left(x - \frac{c}{\beta} \right) = \sum_{m=0}^{\infty} \frac{(\alpha c / \beta)^m}{m!} L_{\alpha, \beta, n-\nu+m, \nu-m}(x)
\end{equation}

Further for $\alpha, \beta = 1$, $c = b$, $m = n$ and $n = \alpha + 1$, the above equation reduces to (cf. [95], p. 342(22))

\begin{equation}
(2.3.19) \quad L_{\nu}^{(\alpha-\nu)}(x-b) = \sum_{n=0}^{\infty} \frac{b^n}{n!} L_{\nu-n}^{(\alpha-\nu+n)}(x).
\end{equation}