CHAPTER - THREE

SMALLEST C.S.C - SUBGROUP AND C -SIMPLE GROUPS

1. Introduction: This chapter is devoted to the study of smallest c.s.c-subgroup of a group denoted as G^* and to groups which contain no c.s.c-subgroup other than itself designated as C-simple groups. We find that the smallest c.s.c-subgroup of a group G is just the subgroup generated by squares of elements of G and is isomorphic to the factor group of the group with respect to the subgroup of all elements of order two in the group. The smallest c.s.c-subgroup of a direct product comes out to be the direct product of smallest c.s.c-subgroups of the direct factors. We investigate that the index of the smallest c.s.c-subgroup in a group, having basis, is a power of 2, actually $2^{r_0(G) + r_2(G)}$, where $r_0(G)$ is the torsion free rank and $r_2(G)$ is 2-rank of G. We prove that the formation of smallest c.s.c-subgroup i.e. the star operation is a homomorphism of the semigroup of all subgroups of a group onto the semigroup of all subgroups of its smallest c.s.c-subgroup, and introduce a notion of essential equivalence between the subgroups of a group. This notion illuminates the study of smallest c.s.c-subgroup in an interesting manner. We use it to show that any two subgroups of a group have the same smallest c.s.c-subgroup if and only if they are essentially equal. We have investigated conditions in which the smallest c.s.c-subgroup of a group becomes cyclic and have pointed out that a group whose smallest c.s.c-subgroup is cyclic, is also cyclic if the smallest c.s.c-subgroup contains the subgroup of all elements
of order 2 in the group. It is interesting to note that the isomorphic groups have isomorphic smallest c.s.c-subgroups but not conversely in general, however, if a group G is isomorphic to a subgroup of a group G_1 then G^* is isomorphic to G_1^* under the same isomorphism, if and only if the isomorphic image of G be essentially equal to G_1. Further, we discuss a condition under which intersection of a subgroup of a group with its smallest c.s.c-subgroup coincides with the smallest c.s.c-subgroup of the subgroup; and find out that smallest c.s.c-subgroup of the anticenter of a group is the anticenter of the smallest c.s.c-subgroup of the group.

Finally, we prove an important theorem on the relation between ranks of a group and of its smallest c.s.c-subgroup showing that they differ by their 2-ranks, and further evaluate the difference in terms of power of elements of order 2. We conclude our discussions with the properties of groups having identical smallest c.s.c-subgroups which we call G-simple groups. Here we show that this class is a subclass of periodic groups, whose elements are of odd order only.

2. Structure Of Smallest C.S.C-Subgroup :

We now prove some theorems which enlighten us about the structure of this important subgroup. We first observe that G^*, the smallest c.s.c-subgroup of a group G is the collection of squares of all the elements of G, and point out that this is a homomorphic image of G with kernel the subgroup of all
elements of order two in \(G \). Also, further, every subgroup of the subgroup \(G^* \) is actually the smallest c.s.c-subgroup of some subgroup of \(G \). Finally it is important to note that the smallest c.s.c-subgroup of a direct product is the direct product of the smallest c.s.c-subgroups of its direct factors.

Theorem 3.1 - Let \(G \) be any group then the set \(G^* = \{g^2 \mid g \in G\} \) is a c.s.c-subgroup of \(G \). The subgroup \(G^* \) is the smallest subgroup of this type and is unique.

Proof. Evidently, \(G^* \) is a subgroup of \(G \) and further from cor.2.2, \(G^* \) is a c.s.c-subgroup of \(G \). Also \(G^* \) is a smallest c.s.c-subgroup of \(G \), for let \(H \) be any c.s.c-subgroup of \(G \), we have again from cor.2.3

\[
g^2 \in H \quad \text{for every} \ g \in G
\]

\[
\implies G^* \subseteq H
\]

For uniqueness, let \(H' \) be a smallest c.s.c-subgroup of \(G \), then since \(H' \) is a c.s.c-subgroup of \(G \), we have

\[
G^* \subseteq H'
\]

\[
\implies H' = G^*
\]

This shows that \(G^* \) is unique and the theorem is completely proved.
Cor. 3.1 - A subgroup H of a group G is completely self compressed if and only if $H \supseteq G^*$.

(Proof is immediate in view of Cor. 2.8)

Theorem 3.2 - The smallest c.s.c-subgroup G^* of a group G is a homomorphic image of the group G with kernel of homomorphism being O_2, the subgroup of all elements of order 2 in G.

Proof. Define a mapping

$$\phi : g \rightarrow g^2$$

of G onto G^*.

Evidently, ϕ is single valued, ϕ is a homomorphism, since for any $g_1, g_2 \in G$.

$$(g_1g_2)\phi = (g_1g_2)^2$$

$$= g_1^2 g_2^2$$

$$= (g_1\phi)(g_2\phi)$$

The kernel is the set of all elements $g \in G$ for which

$$(g)\phi = e$$

i.e.

$$g^2 = e$$

$$\implies \text{Kernel of } \phi \text{ is } O_2$$

This proves the theorem.
Cor. 3.2 - A group G is isomorphic to G^* if and only if there is no element ($\neq e$) of order 2 in G.

The corollary implies that if G is torsion free, G^* is isomorphic to G. In particular, if G be finite group, we have

Cor. 3.2 - A finite group G contains G^* as a proper c.s.c-subgroup if and only if order of G is even but will coincide with G if order of G be odd.

Theorem 3.3 - If G be any group then to every subgroup H' of its smallest c.s.c-subgroup G^*, there exists a subgroup H of G such that $H^* = H'$.

Proof : Given any subgroup H' of G^*, let us define a set

$$H = \{ h | h \in G \text{ such that } h^2 \in H' \}$$

Since H' is a subgroup, we have for any $h_1, h_2 \in H$

$$(h_1 h_2^{-1})^2 = h_1^2 (h_2^{-1})^2$$

$$= h_1^2 (h_2^{-1})^{-1} \in H'$$

$$\implies h_1 h_2^{-1} \in H$$

Hence H is a subgroup of G.

Now, evidently

$$H^* \subseteq H'$$

Also since $H' \subseteq G^*$, to every element $h' \in H'$, there exists
an element \(g \in H \subseteq G \) such that
\[
h' = g^2 \]
\[\Rightarrow H' \subseteq H^*\]
Consequently,
\[H^* = H^*\]
This proves the theorem.

Note: It can be easily seen that in the above theorem the subgroup \(H \) of \(G \) is the largest subgroup for which \(H^* = H^* \).

Theorem 3.4 - If \(G \) be any cyclic group generated by an element \(a \), then its smallest c.s.c-subgroup \(G^* \) is the subgroup generated by \(a^2 \).
Proof. Firstly, it is clear that
\[a^2 \in G^*\]
\[\Rightarrow [a^2] \subseteq G^*\.
Secondly, if \(a^n \) be any element of \(G \),
\[(a^n)^2 = (a^2)^n \in [a^2]\]
\[\Rightarrow G^* \subseteq [a^2]\]
Hence,
\[G^* = [a^2]\]

Theorem 3.5 - If a group \(G \) be a direct product \(\prod_{i=1}^{n} G_i \) of its subgroups \(G_i \)'s, then
\[G^* = G_1^* \times G_2^* \times \ldots \times G_n^*\]
Proof. Evidently,
\[G^*_1 \subseteq G^* \quad \text{for all } i \]
\[\implies G^*_1 \times G^*_2 \times \ldots \times G^*_n \subseteq G^*. \]

on the other hand, for any \(g \in G \), let
\[g = g_1 \cdot g_2 \ldots \cdot g_n \quad \text{where } g_i \in G_i, \quad i = 1, 2, \ldots, n. \]
\[\implies g^2 = (g_1 \cdot g_2 \ldots \cdot g_n)^2 \]
\[= g_1^2 \cdot g_2^2 \ldots \cdot g_n^2 \in G^*_1 \times G^*_2 \times \ldots \times G^*_n \]
\[\implies G^* \subseteq G^*_1 \times G^*_2 \times \ldots \times G^*_n \]

Hence,
\[G^* = G^*_1 \times G^*_2 \times \ldots \times G^*_n \]

This completes the theorem.

Cor. 3.4 - If a group \(G \) has a basis \(\{a_i\}_{\alpha \in \mathcal{A}} \) where \(\mathcal{A} \) is an index set then \(G^* = \bigtimes_{\alpha \in \mathcal{A}} [a_\alpha^2] \).

(Proof is immediate in view of theorems 3.4 and 3.5)

3. Index of \(G^* \) in \(G \):

In the following, we determine \([G : G^*]\) the index in \(G \) of the smallest c.s.c-subgroup \(G^* \) of a group \(G \) having a basis and formulate it in terms of torsion free rank and 2-rank of the group.
Def. 3.1 - The non-identity elements \(a_1, a_2, \ldots, a_k \) of the group \(G \) are called linearly independent, or briefly, independent, if any relation

\[
a_1^{n_1} a_2^{n_2} \ldots a_k^{n_k} = e \quad (n_i \in \mathbb{I})
\]

implies

\[
a_1^{n_1} = a_2^{n_2} \ldots a_k^{n_k} = e
\]

i.e. \(n_1 = 0 \) if \(0(a_1) = \infty \), and \(0(a_1) \mid n_1 \) if \(0(a_1) < \infty \). In the contrary case, they are called dependent.

Def. 3.2 - The cardinal number of a maximal independent set in a group \(G \) containing merely elements of order \(\infty \) is the torsion free rank \(r_0(G) \) of \(G \). For any prime \(p \), the p-rank \(r_p(G) \) of \(G \) is the cardinal number of a maximal independent set in \(G \) containing only the elements of orders of powers of \(p \).

Now, we prove an important theorem to achieve our end:

Theorem 3.6 - Let \(G \) be a finitely generated group and \(L = \{ a_1, a_2, \ldots, a_m \} \) be the set of all elements of order infinity and of \(2^k \) \((k \geq 1)\) in a basis of \(G \) containing elements of infinite and prime power order, then if \(L \neq \emptyset \), \(G^* \) is properly contained in \(G \). Further if \(H = [G^*, a_1, a_2, \ldots, a_l] \), the subgroup generated by \(G^* \) and \(a_1 \)'s such that \(a_i \in L \) where \(0 \leq l \leq m \). Then

\[
[H : G^*] = 2^l.
\]
Proof. Let $B = \{a_1, a_2, \ldots, a_n\}$ be a basis of G under consideration then, by a well known theorem

$$G = [a_1] \times [a_2] \times \cdots \times [a_n]$$

where $[a_1]$ is the cyclic group generated by a_1.

Also, by Cor 3.4, we have

$$G^* = [a_1^2] \times [a_2^2] \times \cdots \times [a_n^2]$$

Evidently $[a_i^2] = [a_i]$ only if $O(a_i) = p^k (k \geq 1)$ where p be an odd prime, hence if $L \neq \emptyset$ it is clear that

$$G^* \subset G$$

Now we assert that for any $g \in G$ and $a_i \in L$, $g^2 \neq a_i$

Since, otherwise

$$g = a_1^\alpha_1 \cdot a_2^\alpha_2 \cdots \cdot a_n^\alpha_n$$

$$\implies g^2 = a_1^{2\alpha_1} \cdot a_2^{2\alpha_2} \cdots \cdot a_n^{2\alpha_n} = a_1$$

$$\implies a_1^\alpha_1 \cdot a_2^{2\alpha_2} \cdots \cdot a_n^{2\alpha_n} = e$$

$$\implies a_1^{2\alpha_1} = a_2^{2\alpha_2} = \cdots = a_1^{2\alpha_i} = \cdots = a_n^{2\alpha_n} = e$$

since B is a linearly independent set.

$$\implies 2^{\alpha_i - 1}, \text{ the power of } a_i, \text{ is either zero or divisible by } 2^k \text{ for some } k \geq 1.$$
A contradiction that \(\alpha_i \) is integral, hence our assertion follows. It is therefore clear that,

\[
g^2 \neq a_1 \cdot a_2 \cdot \ldots \cdot a_h \quad \text{for any } g \in G \text{ and } a_i \in L
\]

We now put \(L' = \{a_1, a_2, \ldots, a_l\} \) and define

\[
K_1 = \text{set of all cosets } a_i G^* \text{, } a_i \in L'
\]

\[
K_2 = \text{set of all cosets } a_i a_j G^* \text{, } a_i, a_j \in L'
\]

\[
\ldots \ldots\]
where a_i's are all distinct elements of L'

\[\implies H \subseteq G^* \cup K_1 \cup K_2 \cup \ldots \cup K_l \]

Consequently,

\[H = G^* \cup K_1 \cup K_2 \cup \ldots \cup K_l \]

\[\implies [H : G^*] \leq (c_0 + c_1 + \ldots + c_l) = 2^l \]

Finally, if for any two different subsets $S' = \{a_1', a_2', \ldots, a_i'\}$ and $S'' = \{a_1'', a_2'', \ldots, a_j''\}$ in L' we get

\[a_1' a_2' \ldots a_i' G^* = a_1'' a_2'' \ldots a_j'' G^* \]

\[\implies a_1' a_2' \ldots a_i' = a_1'' a_2'' \ldots a_j'' g^2 \text{ where } g \in G \]

Now if $g = a_{1}^{\beta_1} a_{2}^{\beta_2} \ldots a_{n}^{\beta_n}$,

\[a_1' a_2' \ldots a_i' = a_1'' a_2'' \ldots a_j'' a_1^{2\beta_1} a_2^{2\beta_2} \ldots a_n^{2\beta_n} \]

\[\implies a_{1}^{\beta_1} a_{2}^{\beta_2} \ldots a_{h'}^{\beta_{h'}-1} \ldots a_{n}^{\beta_n} = e \text{ if } a_{h'} \in S' \text{ and } S'' \]

\[\implies a_{h'}^{\beta_{h'}-1} = e \text{ since } B \text{ is a linearly independent set.} \]

A contradiction that $\beta_{h'}$ is integral.

Therefore, the two cosets in question cannot be equal and
hence are distinct.

\[\implies [H : G^*] \leq 2^l. \]

Thus we prove

\[[H : G^*] = 2^l. \]

Cor. 3.5 - If \(G \) be a finitely generated group then,

\[[G : G^*] = 2^{r_0(G)} + 2^{r_2(G)} \]

where \(r_0(G) \) = torsion free rank of \(G \), \(r_2(G) = 2 - \text{rank of } G. \)

(The proof follows immediately if \(L' = L \) since then \([G:G^*] = 2^m \))

Remark: The theorem is proved above for finitely generated groups, but if \(G \) be any group having a basis, the result holds true. In case, \(L \) is infinite, \([G : G^*] \) is infinite. In particular, if \(G = [a] \) be a cyclic group, then \([G : G^*] = 2 \), if \(G \) be of infinite or even order and is equal to 1 if otherwise.

4. Rank Of A Group And Of Its Smallest C.S.C-Subgroup:

We shall show that ranks of a group and of its smallest c.s.c-subgroup differ by the difference of the 2-ranks of the group and of its smallest c.s.c-subgroup. To get at this, we shall first prove some lemmas.

Lemma 1- In a group \(G \), if a set of elements \(\{g_i\}_{i=1}^n \), containing no element of order 2 is linearly independent implies \(\{g_i^2\}_{i=1}^n \) is linearly independent in \(G^* \).
Proof. Let for a system of integers \(\{\alpha_i\}_{i=1}^n \),

\[
\begin{pmatrix}
(g_1^{\alpha_1})^1 & (g_1^{\alpha_2})^2 & \cdots & (g_1^{\alpha_n})^n \\
(g_2^{\alpha_1})^1 & (g_2^{\alpha_2})^2 & \cdots & (g_2^{\alpha_n})^n \\
\vdots & \vdots & \ddots & \vdots \\
(g_n^{\alpha_1})^1 & (g_n^{\alpha_2})^2 & \cdots & (g_n^{\alpha_n})^n
\end{pmatrix} = e
\]

\[\Rightarrow g_1^{\alpha_1} g_2^{\alpha_2} \cdots g_n^{\alpha_n} = e\]

\[\Rightarrow g_1^{\alpha_i} = e \text{ since } \{g_1\}_{i=1}^n \text{ is linearly independent.}\]

\[\Rightarrow (g_1^{\alpha_i})^i = e \text{ for all } i = 1, 2, \ldots, n.\]

Hence, since \(\{g_1\}_{i=1}^n \) is a system of elements \((\neq e)\), it is linearly independent.

Lemma 2 - In a group \(G \), \(r_0(G) = r_0(G^*) \) and also for any prime \(p \neq 2 \), \(r_p(G) = r_p(G^*) \).

Proof. For the first part \(r_0(G) = r_0(G^*) \), let \(\{g_\alpha\}_{\alpha \in \mathbb{A}} \) be any maximal linearly independent system of elements of infinite order in \(G \). Then \(\{g_\alpha^2\}_{\alpha \in \mathbb{A}} \) is a system of elements of order infinity in \(G^* \). Since linear independence is a property of finite character, it follows from lemma 1, that \(\{g_\alpha^2\}_{\alpha \in \mathbb{A}} \) is a linearly independent system of elements in \(G^* \). Hence

\[r_0(G) \leq r_0(G^*) \]

But clearly, since \(G^* \subseteq G \),

\[r_0(G^*) \leq r_0(G) \]
Consequently
\[r_o(G) = r_o(G^*) \]

For the second part \(r_p(G) = r_p(G^*) \) for all primes \(p(\neq 2) \), let \(\{g^p\}_{\mu \in \mathbb{C}M} \) be a maximal linearly independent system of elements in \(G \) containing elements of orders of powers of a prime \(p(\neq 2) \). Again, it is evident from lemma 1, that \(\{g^2\}_{\mu \in \mathbb{C}M} \) is a linearly independent system of elements in \(G^* \) and also it can be checked that orders of elements in it are powers of same prime \(p \).

Hence
\[r_p(G) \leq r_p(G^*) \]

Also, it is clear that
\[r_p(G^*) \leq r_p(G) \]

Thus
\[r_p(G) = r_p(G^*) \]

This completely proves the lemma.

Theorem 3.7 - For any group \(G \), \(r(G) + r_2(G^*) = r(G^*) + r_2(G) \).

Proof. We know from [3] theorem 8.2, that
\[
\begin{align*}
r(G^*) &= r_o(G^*) + \sum_{p=2,3,5,\ldots} r_p(G^*) \\
&= r_o(G) + \sum_{p=3,5,\ldots} r(G) + r_2(G^*) \text{ by lemma 2.}
\end{align*}
\]
\[\Rightarrow r(G^*) = r(G) - r_2(G) + r_2(G^*) \]

\[\Rightarrow r(G) + r_2(G^*) = r(G^*) + r_2(G) \]

This completes the theorem.

Theorem 3.8 - For any group \(G \),

(i) \[r(G^*) = r(G) - \log_2 \frac{|G[2]|}{|G^*[2]|} \] if \(r_2(G) < \infty \).

(ii) \[r(G) - r(G^*) = |G[2]| - |G^*[2]| \] if \(r_2(G) = \infty \).

Proof. (1) We know from theorem 3.7, that

\[r(G) - r(G^*) = r_2(G) - r_2(G^*) \]

Now

\[r_2(G) = r(G_2) \text{ where } G_2 \text{ is the } 2\text{-component of } \]

the maximal torsion subgroup of \(G \).

\[= r(S(G_2)) \]

\[= r(g_2[2]) \]

\[= r(G[2]) \]

From [3] p. 33

\[|S(G_2)| = 2^k \text{ where } K = r(S(G_2)) \]

\[\Rightarrow |G[2]| = 2^{r_2(G)} \]

\[\Rightarrow r_2(G) = \log_2 |G[2]| \]
Similarly
\[r_2(G^*) = \log_2 |G^*[2]| \]

Hence
\[r(G) - r(G^*) = \log_2 \frac{|G[2]|}{|G^*[2]|} \]

This proves (i)

(ii) If \(r_2(G) = \infty \),
\[r(G_2) = r(S(G_2)) = \infty \]
\[\Rightarrow r(S(G_2)) = |S(G_2)| \quad \text{by [3] p. 33} \]
\[\Rightarrow r_2(G) = |G[2]| \]

Similarly
\[r_2(G^*) = |G^*[2]| \]
\[\Rightarrow r(G) - r(G^*) = |G[2]| - |G^*[2]| \]

This completes the proof.

Cor. 3.6 - In a group \(G \), \(r(G) = r(G^*) \) if and only if \(|G[2]| = |G^*[2]| \)

5. Smallest C.S.C-Subgroup And Fundamental Mappings:

We observe that any homomorphism of a group onto another group induces a homomorphism of the smallest c.s.c-subgroup of the group onto the smallest c.s.c-subgroup of the image group, and further establish that the formation of smallest c.s.c-subgroup is a homomorphism of the semigroup of all subgroups of a group \(G \) onto the semigroup of all subgroups of \(G^* \).

Theorem 3.9 - If \(\phi \) be a homomorphism of a group \(G \) onto a group \(G^* \), then the smallest c.s.c-subgroup of \(G \) is the homomorphic image of the smallest c.s.c-subgroup of \(G \) under \(\phi \).

Proof. From Theorem 3.1, we know that \(G^* \) is a c.s.c-subgroup of \(G \) and hence from cor. 2.9, \((G^*) \phi \) is c.s.c-subgroup of \(G^* \). Thus by Cor. 3.1,
Again from theorem 3.1, for any \(g \in G \)
\[
(g^2)\phi = (g \phi)^2 \in G_1^*
\]

\(\Rightarrow (G^*)\phi \subseteq G_1^* \)

Hence,
\[
(G^*)\phi = G_1^*
\]

This proves the theorem.

Theorem 3.10 - If \(H_1, H_2 \) be any two subgroups of a group \(G \) then,

\[
[H_1 \cdot H_2]^* = H_1^* \cdot H_2^*
\]

Proof. Clearly
\[
H_i^* \subseteq [H_1 \cdot H_2]^* \quad \text{for } i = 1, 2
\]

\(\Rightarrow H_1^* \cdot H_2^* \subseteq [H_1 \cdot H_2]^* \).

On the other hand, if \(h_i \in H_i, \ i = 1, 2 \) then \((h_1h_2)^2 \in [H_1 \cdot H_2]^* \).

Now
\[
(h_1h_2)^2 = h_1^2 h_2^2 \in H_1^* \cdot H_2^*
\]

\(\Rightarrow [H_1 \cdot H_2]^* \subseteq H_1^* \cdot H_2^* \)

Consequently
\[
[H_1 \cdot H_2]^* = H_1^* \cdot H_2^*
\]

This proves the theorem.

Theorem 3.11 - If \(\{H_i\} \) denotes the semigroup of all subgroups of a group \(G \) then,

\[
H_i \longrightarrow H_i^*
\]

is a homomorphism of \(\{H_i\} \) onto the semigroup of all subgroups of \(G^* \).

Proof. (It immediately follows from theorems 3.3 and 3.10).
6. Essential Equality In Subgroups And Their Smallest C.S.C-Subgroups:

We define here a new concept of essential equality between subgroups of a group and establish that any two subgroups of a group have the same smallest c.s.c-subgroup if and only if they are essentially equal and note that the 'essential equality' between subgroups of a group is an equivalence relation. This fact enables us to partition the family of all subgroups of a group into disjoint subclasses such that all subgroup in one class have the same smallest c.s.c-subgroup. Further, we also observe that product of any two such partition classes is in a partition class. We show also that any two subgroups of a group have the same smallest c.s.c-subgroup if and only if so do their isomorphic images; in case of homomorphism however, the c.s.c-subgroups of given subgroups should contain the kernel.

Def. 3.3 - Any two subgroups H_1, H_2 of a group G are said to be essentially equal if

$$H_1 O_2 = H_2 O_2$$

where O_2 is the subgroup of all elements of order 2 in G, in symbols, $H_1 \mathop{\longrightarrow}^\sim H_2$.

The following observations can be easily checked:

(i) If H_1, H_2 be any two subgroups of a group G such that $H_i \supseteq O_2$ for $i = 1, 2$ then,

$$H_1 \mathop{\longrightarrow}^\sim H_2 \text{ if and only if } H_1 = H_2$$

(ii) For every subgroup H of a group $G, H \mathop{\longrightarrow}^\sim H O_2^f$ where O_2^f is a subgroup of O_2.
(iii) In a group G, O_2 and any of its subgroup are essentially equal.

(iv) Essential equality is an equivalence relation in the family of all subgroups of a group.

Theorem 3.12 - Let H_1, H_2 be any two subgroups of a group G then,

$$H_1^* = H_2^* \text{ if and only if } H_1 \leftrightarrow H_2.$$

Proof. Let $H_1^* = H_2^*$, then to any $h_1 \in H_1$ there exists $h_2 \in H_2$ such that

$$h_1^2 = h_2^2$$

$$\implies h_1 h_2^{-1} \in O_2 \text{ where } O_2 \text{ is the subgroup of all elements of order } 2 \text{ in } G.$$

$$\implies h_1 \in h_2 O_2$$

$$\implies H_1 O_2 = H_2 O_2$$

$$\implies H_1 \leftrightarrow H_2$$

Conversely, let

$$H_1 \leftrightarrow H_2$$

$$\implies H_1 O_2 = H_2 O_2$$

$$\implies (H_1 O_2)^* = (H_2 O_2)^*$$

$$\implies H_1^* O_2^* = H_2^* O_2^* \quad [\text{Theorem 3.10}]]$$

$$\implies H_1^* = H_2^* \text{ since } O_2^* = e$$
\[\implies H_1^* = H_1^* \]
\[\implies H_1^* \cdot H_2^* = H_1^* \cdot H_2^* \]
\[\implies [H_1 \cdot H_2]^* = [H_1^* \cdot H_2^*]^* \quad \text{(Theorem 3.10)} \]
\[\implies H_1 \cdot H_2 \iff H_1^* \cdot H_2^* \text{ since } [H_1 \cdot H_2] = H_1 H_2, \]
\[[H_1^* \cdot H_2^*] = H_1^* \cdot H_2^* \]

This completes the proof.

Theorem 3.14 - If \(H_1, H_2 \) be two subgroups of a group \(G \) and \(\phi \) be an isomorphism of \(G \) onto a group \(G' \), then

\[H_1 \iff H_2 \text{ if and only if } (H_1 \phi)^* \iff (H_2 \phi)^* \]

Proof. By theorem 3.12,

\[H_1 \iff H_2 \]
\[\iff H_1^* = H_2^* \]
\[\iff (H_1^* \phi)^* = (H_2^* \phi)^* \quad \text{(Theorem 3.9)} \]
\[\iff (H_1 \phi)^* \iff (H_2 \phi)^* \quad \text{(Theorem 3.12)} \]

Hence the theorem is complete.

Cor. 3.9 - If \(H_1, H_2 \) be any two subgroups of a group \(G \) and \(\phi \) be an isomorphism of \(G \) onto a group \(G' \), then

\[H_1^* = H_2^* \text{ if and only if } (H_1 \phi)^* = (H_2 \phi)^* \]
Theorem 3.15 - If H_1, H_2 be any two subgroups of a group G and ϕ be a homomorphism of G onto a group G' with kernel K, then if H_1^* and H_2^* contain K.

$$H_1 \cong H_2 \text{ if and only if } (H_1^*)^\phi \cong (H_2^*)^\phi$$

Proof. If $H_1 \cong H_2 \Rightarrow (H_1^*)^\phi \cong (H_2^*)^\phi$ follows as in theorem 3.14.

For converse, if

$$(H_1^*)^\phi \cong (H_2^*)^\phi$$

$$\Rightarrow (H_1^*)^\phi = (H_2^*)^\phi$$

$$\Rightarrow (H_1^*)^\phi = (H_2^*)^\phi$$

$$\Rightarrow H_1^* = H_2^* \text{ since } K \subseteq H_1^*$$

$$\Rightarrow H_1 \cong H_2$$

Hence the theorem is complete.

Cor. 3.10 - If H_1, H_2 be any two subgroups of a group G and ϕ be a homomorphism of G onto G', then

$$H_1^* = H_2^* \text{ if and only if } (H_1^\phi)^* = (H_2^\phi)^* \text{ where } H_1^* \supseteq \text{Ker. } \phi.$$

7. G^* As A Cyclic Subgroup:

We investigate below the circumstances in which the smallest c.s.c-subgroup of a group becomes cyclic and find out a condition under which a group is cyclic if its smallest c.s.c-subgroup is cyclic.
Theorem 3.16 - If a group G is cyclic, then G^* is cyclic but conversely G is cyclic if G^* is cyclic and contains O_2, the subgroup of all elements of order 2 in G.

Proof. Firstly, if G be cyclic, then clearly G^* is cyclic. Conversely if G^* be cyclic, let

$$G^* = [g_1^2] \text{ where } g_1 \in G$$

Then for any $g \in G$, since $g^2 \in G^*$,

$$g^2 = (g_1^2)^i \text{ where } i \in I$$

$$\Rightarrow (g g_1^{-1})^2 = e$$

$$\Rightarrow g g_1^{-1} \in O_2 \subseteq G^*$$

$$\Rightarrow g \in g_1 [g_1^2] \subseteq [g_1]$$

$$\Rightarrow G \subseteq [g_1] \subseteq G$$

Hence $G = [g_1]$

This completes the theorem.

Cor 3.11 - If G be a group in which $O_2 = e$, then G is cyclic if and only if G^* is cyclic.

Theorem 3.17 - If G be any finitely generated group, then $G^*(\neq e)$ is cyclic if any basis of G contains only one element of order other than 2.

Proof. (It immediately follows from Cor.3.4, since

$$G^* = [a_1^2] \times \ldots \times [a_n^2]$$

where $\{a_1, a_2, \ldots, a_n\}$ be a basis of G)
Note: The theorem 3.17, also holds for any group G having basis.

8. Relations In G/H, (G/H)* And G*/H*:

We show now an interesting situation where a factor group, its smallest c.s.c-subgroup and the factor group of the corresponding smallest c.s.c-subgroups are all isomorphic.

Theorem 3.18. If H be any subgroup of a group G, then

\[(G/H)^* \cong G^*/H^*\]

Proof. Since every element of \((G/H)^*\) is of the form \(g^2 H\).

We define a mapping \(\phi\) of \((G/H)^*\) onto \(G^*/H^*\) as

\[\phi : g^2 H \longrightarrow g^2 H^*\]

Evidently \(\phi\) is single valued. If \(g_1^2 H, g_2^2 H \in (G/H)^*\), then

\[\((g_1^2 H)(g_2^2 H))\phi = (g_1^2 g_2^2 H)\phi\]

\[= ((g_1 g_2) g_2 H)\phi\]

\[= (g_1 g_2)^2 H^*\]

\[= (g_1^2 H^*)(g_2^2 H^*)\]

\[= (g_1^2 H)\phi (g_2^2 H)\phi\]

\[\implies \phi\ is\ a\ homomorphism\]

Finally, if

\[(g_1^2 H)\phi = (g_2^2 H)\phi\]
Hence \(\phi \) is an isomorphism

This proves the theorem.

Theorem 3.19 - If \(H \) be any subgroup of a group \(G \), then

\[
\frac{G}{H} \cong \frac{G^*/H^*}{G/H}
\]

and the kernel of the homomorphism is \(H O_2^*/H \) where \(O_2 \) is the subgroup of all elements of order 2 in \(G \).

Proof. We define a mapping \(\eta \) of \(G/H \) onto \(G^*/H^* \) as

\[
\eta : gH \longrightarrow g_1^2 H^*
\]

Clearly \(\eta \) is single valued. Further for \(g_1 H, g_2 H \in G/H \)

\[
((g_1 H)(g_2 H))\eta = (g_1 g_2 H)\eta
\]

\[
= (g_1 g_2)^2 H^*
\]

\[
= (g_1^2 H^*)(g_2^2 H^*)
\]

\[
= (g_1 H)\eta (g_2 H)\eta
\]

\[\Rightarrow \eta \text{ is a homomorphism.}\]
Finally, if
\[(gH)^n = H^*\]
\[<=> \quad g^2 H^* = H^*\]
\[<=> \quad g^2 \in H^*\]
\[<=> \quad g^2 = H^2 \quad \text{where } h \in H\]
\[<=> \quad gH^1 \in O_2\]
\[<=> \quad g \in hO_2\]
\[<=> \quad g \in H^2\]

Hence the theorem is complete.

Cor. 3.12 - If \(H \supseteq O_2 \), \(G/H \cong G^*/H^* \).

(Proof follows immediately, since by fundamental theorem of homomorphism \(G/H \cong G^*/H^* \)).

Cor. 3.13 - For any subgroup \(H \) of a group \(G \), if \(H \supseteq O_2 \)
\[G/H \cong (G/H)^* \cong G^*/H^* \].

Proof (It immediately follows from theorem 3.18 and Cor. 3.12)

9. Non Isomorphic Groups Having Isomorphic Smallest C.S.C. Subgroups:

Theorem 3.20 - Any two isomorphic groups have isomorphic smallest c.s.c. subgroups but not conversely.

Proof. The direct part of the theorem is obvious in view of theorem 3.9. For the converse, consider
\[G = [a, b]; \, a^3 = e, \, b^2 = e, \, ab = ba \]

\[G_1 = [a'], \text{ the cyclic group of order } 3. \]

which give

\[G^* = \{a, a^2, e\}, \, G_1^* = \{a', a'^2, e\} \]

We observe that \(G^* \) and \(G_1^* \) being cyclic groups of the same order are isomorphic but \(G \) is not isomorphic to \(G_1 \) since \(O(G) > O(G_1) \).

Thus the converse does not hold.

Theorem 3.21 - If \(\phi \) be an isomorphism of a group \(G \) into a group \(G_1 \), then \(G^* \cong G_1^* \) if and only if \((G) \phi \xrightarrow{\sim} G_1 \).

Proof. (The proof is immediate in view of theorem 3.9 and 3.12)

Cor. 3.14 - Any two groups whose any two bases under an isomorphism of one group into the other differ only by elements of order 2, have isomorphic smallest c.s.c-subgroups under the same isomorphism.

Proof. Let, for two groups \(G, G_1 \) and for an isomorphism \(\phi \) of \(G \) into \(G_1 \) the condition of the corollary be satisfied, then it is evident that \((G) \phi \xrightarrow{\sim} G_1 \), and hence, from the above theorem, the proof follows immediately.

10. \(G_1 \cap G^* = G_1^* \) For An Arbitrary Subgroup \(G_1 \).

We determine, in this section, a condition for the smallest c.s.c-subgroup of an arbitrary subgroup of a group to be equal to the intersection of the smallest c.s.c-subgroup of the group with the arbitrary subgroup, and further find out under the same
condition, the existence of a c.s.c-subgroup of the group corresponding to each c.s.c-subgroup of an arbitrary subgroup.

Theorem 3.22 - If \(G \) be any subgroup of a group \(G \), then

\[G \cap G^* = G^* \text{ if and only if } (G - G^*) \cap G^* = \emptyset \]

Proof. Let

\[(G - G^*) \cap G^* = \emptyset \]

\[\implies G^* \subseteq (G - (G - G^*)) = G^* \]

But clearly

\[G^* \subseteq G \]

\[\implies G_1^* = G^* \]

Conversely, let \(G \cap G^* = G^* \). Now suppose \(g_1 \in (G_1 - G_1^*) \) such that

\[g_1^2 \in G^* \]

\[\implies g_1 \in G_1 \cap G^* = G^* \]

A contradiction, hence

\[(G - G_1^*) \cap G^* = \emptyset \]

Thus the proof is complete.

Theorem 3.23 - If for a subgroup \(G_1 \) of a group \(G \), \(G \cap G^* = G^* \) then for any c.s.c-subgroup \(\overline{G} \) of \(G \) there exists a c.s.c-subgroup \(\overline{G_1} \) of \(G \) such that \(\overline{G_1} = \overline{G} \cap G_1 \).
Proof. We define
\[\overline{G} = [\overline{G}_1, G^*] \]

Evidently, G is a c.s.c-subgroup of G since $\overline{G} \supseteq G^*$. Also
\[\overline{G}_1 \subseteq \overline{G} \cap G_1 \]

Now, if $g^* \in \overline{G} \cap G_1$, we have
\[g^* = g_1 = g^* \overline{g} \text{ where } g_1 \in G_1, g^* \in G^*, \overline{g} \in \overline{G}_1 \]
\[\Rightarrow g^* = g_1 (\overline{g})^{-1} \in G_1 \]
\[\Rightarrow g^* \in G^* \text{ since } G_1 \cap G^* = G_1^* \]
\[\Rightarrow g^* = g^* \overline{g} \in \overline{G}_1 \text{ since } G_1^* \subseteq \overline{G}_1 \]
\[\Rightarrow \overline{G} \cap G_1 \subseteq \overline{G}_1 \]

Consequently
\[\overline{G}_1 = \overline{G} \cap G_1 \]

Thus the result is established.

11. Groups With Identical Smallest C.S.C-Subgroups:

Def. 3.4 - A group G is called C-simple if $G = G^*$.

Evidently the following are some of the classes of C-simple groups.

(i) Finite groups of odd order

and

(ii) Groups having a basis each of whose element is of odd order.

Theorem 3.24 - The union of an ascending sequence of C-simple groups is itself a C-simple group.

Proof. Let a group G be union of an ascending sequence
of C-simple proper subgroups of G. If G is not C-simple, then there exists a proper c.s.c-subgroup H of G. Now, since $H \subseteq G$, for some index k,

$$G_k \cap H = G_k$$

$$\implies G_k^* \neq G_k$$

since $G_k = G_k^*$ and $H \supseteq G^* \supseteq G_k^*$

A contradiction, that G_k is C-simple. Hence the result follows.

Theorem 3.25 - If every subgroup of a group is G-simple then the group is C-simple but not conversely.

Proof. Let

$$G = \left\{ (r_1, r_2, \ldots, r_n, \ldots) \middle| r_i, r_j \in \mathbb{R} \right\}$$

be the group of all sequences of rational numbers with respect to addition and suppose

$$H = \left\{ (i_1, i_2, \ldots, i_n, \ldots) \middle| i_i, i_j \in I \right\}$$

be the subgroup of G consisting of all sequences of integers, then it is evident that

$$G^* = G$$

but

$$H \neq H^*$$

Conversely, if the condition be satisfied, the proof is trivial.

This completes the theorem.
12. Anticenter And Smallest C.S.C-Subgroup:

This section is of more or less academic interest. Here, we establish that anticenter of the smallest c.s.c-subgroup of a group is the smallest c.s.c-subgroup of the anticenter of the group. To begin with we give the following definitions in case of an arbitrary (abelian or non-abelian) group.

Def.3.5 - In a group G, the set \(R(G) = \{ g \mid gh = hg \text{ for any } h \in G \implies g = k^i, h = k^j \text{ for some } k \in G, i,j \in \mathbb{I} \} \) is called rim of G.

Def.3.6 - If G be a group then the subgroup generated by \(R(G) \), the rim of G is called 'anticenter' of G and is denoted by \(AC(G) \).

Theorem 3.26 - Let G be any group in which \(O_2 \), the subgroup of all elements or order 2 in G be identity, then

\[AC(G^*) = (AC(G))^* \]

Proof. Let \(g \in AC(G) \) then for any \(h \in G \)

\[g^2 h^2 = h^2 g^2 \]

\[\implies g h = h g \]

\[\implies g = g_1^i, h = g_1^j, i,j \in \mathbb{I}, g_1 \in G \]

\[\implies g^2 = (g_1^i)^1, h^2 = (g_1^j)^j \text{ where } g_1^2 \in G^* \]

\[\implies g^2 \in R(G^*) \]

\[\implies g^2 \in AC(G^*) \]
On the other hand, if \(g^2 \in \text{AC}(G^*) \) then for any \(h \in G \), we have

\[
gh = hg
\]

\[
\Rightarrow g^2h^2 = h^2g^2
\]

\[
\Rightarrow g^2 = (g^2)^1, h^2 = (g^2)^j, i, j \in I, g^2 \in G^*
\]

\[
\Rightarrow (gg^t)^{-1} = e, (hg^t)^{-1} = e
\]

\[
\Rightarrow gg^t = e, hg^t = e \text{ since } O_2 = e
\]

\[
\Rightarrow g = g^t, h = g^t \text{ where } g^t \in G
\]

\[
\Rightarrow g \in \text{AC}(G)
\]

\[
\Rightarrow g^2 \in (\text{AC}(G))^*
\]

Hence,

\[
\text{AC}(G^*) \subseteq (\text{AC}(G))^*
\]

Consequently,

\[
\text{AC}(G^*) = (\text{AC}(G))^*
\]

This completes the theorem.

Cor. 3.15 - In any group \(G \), if \(r_2(G) = 0 \), \(\text{AC}(G^*) = (\text{AC}(G))^* \)

where \(r_2(G) \) is the 2-rang of \(G \). In particular if \(G \) be torsion free the result holds.
Bibliography:

 (Translated From The Russian And Edited By K.A.Hirsh),
 Chelsea Publishing Company New York, N.Y.

2. N. Jacobson: Lectures In Abstract Algebra Vol. I,
 D. Van Nostrand Company, INC.

3. L. Fuchs: Abelian Groups, Publishing House Of The
 Hungarian Academy Of Sciences Budapest, 1958.

 pp. 61 - 63.

7. B.H. Neumann: Groups With Finite Classes Of Conjugate

8. M.A. Kazim: Notes On Some Problems In Group Theory,
 (unpublished)

9. P.K. Sharma: A Note On Translative Mappings, Publ. Mathematicae,
 Debrecen 1965, pp. 303-305.