APPENDIX

A REMARK ON THE COMMUTATIVITY OF CERTAIN RINGS

In a recent paper [9] R.N. Gupta proved that a division ring satisfying the polynomial identity \(xy^2x = yx^2y \) is commutative. His proof is based on the Cartan-Brauer-Hasse theorem.

In this appendix our aim is to prove the following:

Theorem. Let \(R \) be a semiprime ring with its center \(Z \). Suppose that \(xy^2x - yx^2y \in Z \) for all \(x, y \) in \(R \). Then \(R \) is commutative.

This result can easily be proved by Posner's theorem [20] on polynomial identity when \(R \) has characteristic different from 2. Here we have given an elementary proof of this result.

We begin with the following:

Lemma 1. Let \(R \) be a prime ring with \(xy^2x - yx^2y \in Z \), the center of \(R \), for all \(x, y \) in \(R \). Then \(Z \) is non-zero.

Proof. Suppose on the contrary \(Z = \{ 0 \} \). Then by hypothesis

\[
xy^2x = yx^2y \text{ for all } x, y \in R \tag{1}
\]

In (1) replace \(y \) by \(y + y^2 \), then

\[
xy^2x + xy^3x + xy^3x + xy^4x = yx^2y + y^2x^2y + y^2x^2y + y^2x^2y^2
\]
In view of (1), the last equation gives
\[2xy^3 x = y^2 x^2 y + xy^2 y^2 \] for all \(x, y \in R \) \hspace{1cm} (2)

Case I. \(\text{Char. } R = 2. \) Then (2) gives
\[y^2 x^2 y + xy^2 y^2 = 0 \]

Since \(xy^2 y = xy^2 x \) for all \(x, y \in R. \) Therefore we get
\[yxy^2 x + xy^2 y^2 = 0 \]
i.e.
\[yx(y^2x + xy^2) = 0 \] for all \(x, y \in R \) \hspace{1cm} (3)

Replace \(x \) by \(x+y \) in (2), we get
\[y(x+y) \left\{ y^2(x+y) + (x+y)y^2 \right\} = 0 \]
i.e.
\[(yx + y^2)(y^2x + xy^2) = 0 \]

By (3) the last equation yields
\[y^2 (y^2x + xy^2) = 0 \] for all \(x, y \in R \) \hspace{1cm} (4)

In (4) replace \(x \) by \(rx \) when \(r \in R, \) from
\[y^2rx + rxy^2 = \{ y^2rx + rxy^2 \} + \{ rxy^2 + rxy^2 \} \]
we get
\[y^2 r (y^2x + xy^2) = 0 \] for all \(x, y \in R. \)

Since \(R \) is prime, either \(y^2 = 0 \) or \(y^2 \in Z \) for all \(y \in Z. \)
As \(Z = \langle n(0) \rangle \), \(y^2 = 0 \) for all \(y \in \mathbb{R} \).

Case II. \(\operatorname{Char.} \mathbb{R} = 2 \).

Replace \(y \) by \(y + y \) in (1) to obtain

\[
xy^2x + xy^4x + xy^4x + xy^6x = yx^2y + y^3x^2y + yx^2y^3 + y^3x^2
\]

In view of (1), the last equation gives

\[
xy^4x + xy^4x = yx^2y + yx^2y^3
\]

Again by (1) we get

\[
y^2x^2y^2 + y^2x^2y^2 = y^2 xy^2x + xy^2x y^2
\]

i.e., \(y^2x(xy^2 - y^2x) = (xy^2 - y^2x) y^2 \) for all \(x, y \in \mathbb{R} \) \(\quad (5) \)

In (5) replace \(x \) by \(x+y \), then

\[
y^2(x+y) \left\{ (x+y)y^2 - y^2(x+y) \right\} = \left\{ (x+y)y^2 - y^2(x+y) \right\} (x+y)y^2
\]

i.e., \((y^2x + y^3)(xy^2 - y^2x) = (xy^2 - y^2x)(xy^2 + y^3) \)

In view of (5) the last equation yields

\[
y^3(xy^2 - y^2x) = (xy^2 - y^2x)y^3
\]

i.e., \(y^3 I y^2 (x) = 0 \) for all \(x, y \in \mathbb{R} \).

By Lemma 2.3 either \(y^3 \in \mathbb{Z} \) or \(y^2 \in \mathbb{Z} \) for all \(y \in \mathbb{R} \). Since \(Z = \langle n(0) \rangle \), \(y^2 = 0 \) or \(y^3 = 0 \) for all \(y \in \mathbb{R} \). If for some \(y \) in \(\mathbb{R} \), \(y^2 \neq 0 \), then for that \(y, y^3 = 0 \), hence by (2), we get
\[y^2 x^2 y + y x^2 y^2 = 0 \text{ for all } x \in R \] (6)

Replace \(x \) by \(xy \) in (6), then

\[y^2(x^2+xy+yz+y^2)y + y(x^2+xy+yx+y^2)y^2 = 0 \]

i.e., \(y^2x^2y + y^2xy^2 + yx^2y^2 + y^2xy^2 = 0 \), since \(y^3 = 0 \)

By (6), the last equation gives

\[2y^2xy^2 = 0, \quad y^2xy^2 = 0 \text{ for all } x \in R \]

Since \(R \) is prime, \(y^2 = 0 \). Hence \(y^2 = 0 \) for all \(y \in R \).

So in both cases, \(y^2 = 0 \) for all \(y \in R \). Therefore,

\[0 = (x+y)^2 = x^2 + xy + yx + y^2 = xy + yx \]

Multiply by \(x \) on the right to obtain \(xyx = 0 \) for all \(x,y \) in \(R \). Since \(R \) is prime, \(x = 0 \) for all \(x \in R \), a contradiction.

Hence the conclusion that \(Z \neq (0) \) holds.

Lemma 2. If \(R \) is a prime ring with \(xy^2z - yz^2y \in Z \) for all \(x, y \in R \), then \(R \) is commutative.

Proof. By Lemma 1, \(Z \neq (0) \). Let \(a (\neq 0) \in Z \).

Replace \(x \) by \(x+z \) in the relation \(xy^2z - yz^2y \in Z \), we get

\[(x+z)y^2(x+z) - y(x^2 + xz + sx + s^2) \quad y \in Z \]

i.e., \((xy^2z - yz^2y) + z (y^2x - 2yxy + xy^2) \in Z \).
But, \(xy^2z - yz^2y \in Z \). Therefore

\[
s(2y^2x - 2z^2y + xy^2) \in Z \text{ for all } x, y \in R.
\]

Since \(z \neq 0 \), by Lemma 1.3,

\[
(y^2x - 2z^2y + xy^2) \in Z \text{ for all } x, y \in R \quad (7)
\]

Replace \(x \) by \(xy \) in (7), thus

\[
(y^2x - 2z^2y + xy^2) y \in Z \text{ for all } x, y \in R \quad (8)
\]

If for some \(y \) in \(R \), \(y^2x - 2z^2y \neq 0 \), then by (7), (8) and Lemma 1.3, \(y \in Z \), a contradiction. Hence

\[
y^2x - 2z^2y + xy^2 = 0 \text{ for all } x, y \in R \quad (9)
\]

Case I. Char. \(R \neq 2 \). Equation (9) can be written as

\[
y(xy - y) = (yx - xy) y \text{ for all } x, y \in R.
\]

By Lemma 2.1 \(y \in Z \) for all \(y \in R \). Hence \(R \) is commutative.

Case II. Char. \(R = 2 \). Then (9) gives \(y^2 \in Z \) for all \(y \in R \).

In particular, \((x+y)^2 = x^2 + xy + yx + y^2 \in Z \)

Hence \(xy + yx \in Z \). Replace \(x \) by \(xy \), then \((xy + yx) y \in Z \).

If for some \(y \) in \(R \), \(xy + yx \neq 0 \) for some \(x \in R \), then by Lemma 1.3 \(y \in Z \), a contradiction. Thus \(xy + yx = 0 \) for all \(x, y \in R \). Hence \(R \) is commutative.

Let \(R \) be a semiprime ring in which \(xy^2x - yz^2y \) is central of \(R \) for all \(x, y \) in \(R \). Since \(R \) is semiprime it is isomorphic
to a subdirect sum of prime rings R_κ each of which, as a homomorphic image of R, enjoys the hypothesis placed on R.

By Lemma 2, R_κ are commutative, since subdirect sum of commutative rings is commutative, R is commutative. Thus we have proved the following:

Theorem 1. If R is a semi prime ring with $xy^2x - yx^2y \in Z$, the center of R, for all $x, y \in R$, then R is commutative.

Indeed, rings of 3×3 strictly upper triangular matrices of any ring satisfy the hypothesis placed on R in Theorem 1, but these rings may not be commutative.