CHAPTER V

PSEUDO-METRIC SEMI-SYMMETRIC CONNECTIONS

5.1. INTRODUCTION.

In 1975 Prvanovic [17] introduced pseudo-metric semi-symmetric connections on a Riemannian manifold N as follows:

Let ∇ be the Riemannian connection on N with respect to the Riemannian metric g. Consider the connections

\[\nabla^1_X Y = D_X Y + \pi(X)Y - g(X,Y)P, \]
\[\nabla^2_X Y = D_X Y + \pi(Y)X - g(X,Y)P, \]

where π is a 1-form and P a vector field defined by

\[g(X,P) = \pi(X), \]

as well as the connections

\[\nabla^3(\pi(Y)) = \omega(\nabla^1 X) + (\nabla^2 \omega)(Y), \]
\[\nabla^4(\pi(Y)) = \omega(\nabla^2 X) + (\nabla^1 \omega)(Y), \]

where ω is a 1-form. Then the connection ∇^2 is the semi-symmetric metric connexion ([24], [30]), and ∇^3 and ∇^4 are called pseudo-metric semi-symmetric connections [17].
Following Prvanovic' [17] definitions and adopting them in the setting of almost contact metric manifold by identifying \(\pi \) with the contact form \(A \), and \(P \) with the characteristic vector field \(t \), we construct two connexions

\[
(5.1.6) \quad \nabla (AX) = A(\nabla X) + (\nabla A)(Y),
\]

and

\[
(5.1.7) \quad \nabla (AY) = A(\nabla Y) + (\nabla A)(Y),
\]

in terms of the connexions

\[
(5.1.8) \quad \nabla^1 X Y = D_X Y + A(X)Y - g(X,Y)t,
\]

and

\[
(5.1.9) \quad \nabla^2 X Y = D_X Y + A(Y)X - g(X,Y)t,
\]

where \(\nabla \) is the semi-symmetric metric connexion studied in Chapter III ([24], [30]), and \(\nabla^3 \) and \(\nabla^4 \) are the pseudo-metric semi-symmetric connexions, i.e.,

\[
\nabla^3_k g_{ij} = 0, \quad \nabla^4_k g = 0,
\]

but

\[
\nabla^4_k g_{ij} = \nabla^1_k g_{ij} = -2A_k g_{ij} + A^j_k g_{ix} + A^j_k g_{ik},
\]

and

\[
\nabla^3_k g = \nabla^1_k g = 2A_k g - t \delta_k - t \delta_k,
\]

where \(A_k \) and \(t^i \) are the components of \(A \) and \(t \) with respect to local co-ordinates.

In what follows, we study, in particular, the curvature...
tensor of those connections.

5.2. CURVATURE TENSOR OF THE CONNECTIONS \triangledown^3 AND \triangledown^4.

As has been shown by Prvanovic [17], the curvature tensor $R(X,Y,Z)$ of the connection \triangledown^3 can be written as

$$R(X,Y,Z) = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z + \nabla_{[X,Y]} Z - \nabla_{Y\cdot X} Z.$$

Then, after some calculation, we find that in an almost contact metric manifold \mathcal{E} and \mathcal{F} are related by (1.27)

$$R(X,Y,Z) = R(X,Y,Z) + \alpha(X,Y)Z - \alpha(Y,Z)X$$

where α is a tensor field of type $(0,2)$ defined by

$$\alpha(X,Y) = (\nabla_X \alpha)(Y) - \nabla_X (\alpha(Y)) + g(Y, Z),$$

and β is a tensor field of type $(1,1)$ defined by

$$\beta(X, Y) = \alpha(X, Y).$$

Let us put

$$\rho(X,Y) df^2 (0^3 R)(X,Y),$$

where 0^3 stands for contraction in the third slot. Then (5.2.2) gives
\[(5.2.6) \quad \alpha(X,Y) = \frac{1}{n-1} \rho(X,Y), \]

and

\[(5.2.7) \quad \beta(X) = \frac{1}{n-1} \rho(X), \]

where

\[(5.2.8) \quad g(\rho(X),Y) = \rho(X,Y). \]

Substituting (5.2.6) and (5.2.7) in (5.2.2), we get

\[
R(X,Y,Z) = \frac{1}{n-1} \left[\rho(X,Z) - \rho(Y,Z)X + g(Y,Z) \rho(X) - g(Y,Z) \rho(X) \right]
\]

\[(5.2.9) \quad = k(X,Y,Z) + g(Y,Z)X - g(X,Y). \]

It is easily seen that the vanishing of \(R(X,Y,Z) \)

implies

\[(5.2.10) \quad K(X,Y,Z) = - \{ g(Y,Z)X - g(X,Y) \}, \]

which in turn shows that

Theorem 5.2.1 - If an almost contact metric manifold \(M \) admits a pseudo-metric semi-symmetric connection \(\nabla \) whose curvature tensor \(R(X,Y,Z,U) \) vanishes, then the Riemannian curvature of \(M \) is constant, and is in fact equal to \(-1\).

As has been shown by Prvanovic [17], the curvature tensor \(R(X,Y,Z) \) of the connection \(\nabla \) can be written as
\[(5.2.11) \quad R(x, y, z) = \begin{vmatrix} 2 & 1 \\ 4 & x \\ \end{vmatrix} \begin{vmatrix} 2 \\ y \\ \end{vmatrix} - \begin{vmatrix} 1 \\ y \\ \end{vmatrix} \begin{vmatrix} 2 \\ x \\ \end{vmatrix} + \begin{vmatrix} 2 \\ y \\ \end{vmatrix} \begin{vmatrix} 1 \\ x \\ \end{vmatrix} \begin{vmatrix} 1 \\ y \\ \end{vmatrix} \begin{vmatrix} 1 \\ x \\ \end{vmatrix} \begin{vmatrix} y \\ \end{vmatrix} \begin{vmatrix} x \\ \end{vmatrix}.
\]

Then we see that in an almost contact metric manifold, \(R \) and \(K \) are related by \([27] \)
\[
R(x, y, z) = K(x, y, z) + T(x, y)z - T(y, z)x \tag{5.2.12}
\]
where
\[
\begin{align*}
R(x, y, z) & = g(x, z)g(y) - g(x, z)g(y) - \delta(x, y)z \\
+ & \delta(x, y)y - g(x, z)E(y) + g(y, z)E(x),
\end{align*}
\]
and \(G \) and \(E \) are the tensor fields of type \((1, 1)\) defined by
\[
(5.2.13) \quad (a) \quad T(x, y) = (D_x A)(y), \quad (b) \quad \delta(x, y) = A(x)A(y) - g(x, y),
\]
and \(G \) and \(E \) are the tensor fields of type \((1, 1)\) defined by
\[
(5.2.14) \quad (a) \quad g(G(x), y) = T(x, y), \quad (b) \quad g(E(x), y) = \delta(x, y).
\]

Let us put
\[
\begin{align*}
\rho(x, z) & \overset{\text{def}}{=} (c_1 R)(x, z) ; \quad \kappa(x, z) \overset{\text{def}}{=} (c_1 K)(x, z), \\
\tilde{\rho}(x, z) & \overset{\text{def}}{=} (c_2 R)(x, z) ; \quad \tilde{\kappa}(x, z) \overset{\text{def}}{=} (c_2 K)(x, z), \\
\tilde{\tilde{\rho}}(x, y) & \overset{\text{def}}{=} (c_3 R)(x, y) ; \quad \tilde{\tilde{\kappa}}(x, y) \overset{\text{def}}{=} (c_3 K)(x, y) = 0,
\end{align*}
\]
\[
\begin{align*}
\mathbf{t} & = \rho(x_1, x_1) ; \quad \mathbf{t} = \tilde{\rho}(x_1, x_1),
\end{align*}
\]
\[
\begin{align*}
\mathbf{r} = \frac{1}{4} \rho(x_1, x_1) + k = \frac{1}{4} \rho(x_1, x_1) = \frac{1}{4} \rho(x_1, x_1),
\end{align*}
\]

\(x_1\) being \(n\) orthonormal vectors. Then (5.2.15) gives

\[
\rho(y, z) = \nu(x, y) + \tau(x, y) = (n-1) \nu(x, y) - \delta(z, y) - (G-E) \gamma(x, y),
\]

(5.2.15)

and

\[
\rho(x, y) = (n-1) \left[\nu(x, y) - \delta(x, y) \right].
\]

(5.2.16)

From (5.2.16) and (5.2.17), we get

\[
\begin{align*}
G &= \frac{1}{n-1} \left(\frac{1}{4} \mathbf{r} + k \right), \\
E &= \frac{1}{n-1} \left(\frac{1}{4} \mathbf{r} - \frac{1}{4} \mathbf{r} + k \right),
\end{align*}
\]

and hence

(5.2.19)

\[
G = E = \frac{1}{n-1} \frac{1}{4} \mathbf{r}.
\]

From (5.2.15) and (5.2.17), we find that

(5.2.19)

\[
\nu(x, y) = \frac{1}{n-1} \left[\nu(x, y) + \frac{1}{n-1} \left(\frac{1}{4} \rho(x, y) - \frac{1}{4} \rho(x, y) \right) \right],
\]

and

\[
\nu(x, y) = \frac{1}{n-1} \left[\nu(x, y) + \frac{1}{n-1} \left(\frac{1}{4} \rho(x, y) - \frac{1}{4} \rho(x, y) \right) \right].
\]
\[
5(x, y) = \frac{1}{n-1} \left[x(x, y) + \frac{2-\alpha}{n-1} m(y, x) - m(y, x) \right]
\]

(5.2.20)

\[
- \frac{1}{n-1} e(x, y)
\]

Then, in consequence of (5.2.18), (5.2.19) and (5.2.20), equation (5.2.19) takes the form

\[
R(x, y, z) = \frac{1}{4} \left[\left(x(x, y) + g(x, z) \right) + \left(y(y, z) + g(y, x) \right) \right]
\]

(5.2.21)

\[
- \frac{1}{n-1} \left[\left(y(y, z) + g(y, z) \right) + \left(x(x, z) + g(x, z) \right) \right] X
\]

\[
+ \frac{1}{n-1} \left[\left(y(y, z) + g(y, z) \right) + \left(x(x, z) + g(x, z) \right) \right] Y
\]

\[
= K(x, y, z) - \frac{1}{n-1} \left[x(x, y)x - x(x, z) \right]
\]

We now assume that \(R(x, y, z, u) = 0 \). Then (5.2.21) becomes

\[
K(x, y, z, u) = \frac{1}{n-1} \left[x(x, z)g(x, u) - x(x, z)g(y, u) \right]
\]

(5.2.22)

Contracting in \(Y, Z \), we get

\[
\psi(x, u) = \frac{1}{n} g(x, u)
\]

(5.2.23)
which shows that the manifold then is an EINSTEIN SPACE.
From (5.2.22) and (5.2.23) it follows that the Riemannian curvature is constant.

Hence we conclude:

THEOREM 5.2.2 - If an almost contact metric manifold N admits a pseudo-metric semi-symmetric connexion ∇ whose curvature tensor $R(X,Y,Z,U)$ vanishes, then the Riemannian curvature of N is constant and is in fact equal to $r/n(n-1)$.

The following results are immediate consequences of (5.2.21):

COROLLARY 5.2.3 - If an almost contact metric manifold admits a pseudo-metric semi-symmetric connexion ∇ whose Ricci tensors $^R\rho(X,Y)$ and $^R\rho(X,Y)$ vanish, then the curvature tensor $R(X,Y,Z,U)$ of ∇ is equal to the projective curvature tensor of the Riemannian connexion (cf. [17]).

COROLLARY 5.2.4 - If the curvature tensor $R(X,Y,Z,U)$ of the pseudo-metric semi-symmetric connexion ∇ vanishes, then the projective curvature tensor of the Riemannian connexion also vanishes (cf. [17]).