CHAPTER-III

AN ALGEBRAIC STUDY OF A CLASS OF INTEGRAL FUNCTIONS

3.1 INTRODUCTION. In 1969, Sen [69] studied the topological and algebraic structure of the set of all complex valued functions \(f(z) = \sum_{n=0}^{\infty} a_n z^n \), where \(|a_n| \) is bounded.

Let \(R \) denote the set of all complex valued functions \(f(z) = \sum_{n=0}^{\infty} a_n z^n \), where \(\lbrack n \rbrack! |a_n| \) is bounded. Here \(\lbrack n \rbrack! \) denotes the q-factorial function given by

\[
\lbrack n \rbrack! = \prod_{\ell=1}^{n} [\ell],
\]

where for the real number \(\ell < q < 1 \) the q-number \(\lbrack n \rbrack \) is defined as

\[
\lbrack n \rbrack = \frac{1-q^n}{1-q}.
\]

The number \(\lbrack n \rbrack \rightarrow n \) as \(q \rightarrow 1 \).

It can easily be verified that the elements of \(R \) are all integral functions. In \(R \) we define addition and multiplication as follows:

\[
f(z) + g(z) = \sum_{n=0}^{\infty} \left(a_n + b_n \right) z^n
\]

and

\[
f(z) \cdot g(z) = \sum_{n=0}^{\infty} \lbrack n \rbrack! a_n b_n z^n
\]
where \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) and \(g(z) = \sum_{n=0}^{\infty} b_n z^n \) are two elements of \(R \).

In this chapter a study has been made of the topological and algebraic structure of \(R \).

\(\S 3.2 \). In this section, we are going to prove that \(R \) is a commutative ring with identity element.

Lemma 1. \(R \) is closed with respect to the two operation '+' and 'o' given by (3.1.3) and (3.1.4).

Proof. Since \(\binom{n}{\lfloor n \rfloor} \frac{|a_n b_n|}{\lfloor n \rfloor} \leq \frac{\binom{n}{\lfloor n \rfloor} |a_n| + \binom{n}{\lfloor n \rfloor} |b_n|}{\ln n} \) therefore \(f(z) + g(z) \) is an element of \(R \) when \(f(z) \in R \) and \(g(z) \in R \).

Again \(\binom{n}{\lfloor n \rfloor} \frac{|a_n b_n|}{\lfloor n \rfloor} \leq \frac{\binom{n}{\lfloor n \rfloor} |a_n|}{\lfloor n \rfloor} \frac{\binom{n}{\lfloor n \rfloor} |b_n|}{\ln n} \). This implies that when \(f(z) \) and \(g(z) \) are two elements of \(R \), then \(f(z) \cdot g(z) \in R \).

Hence the lemma.

Lemma 2. \(e_q (1-q)z = \sum_{n=0}^{\infty} \frac{z^n}{\binom{n}{\lfloor n \rfloor}} \) is the identity element of \(R \).

Proof. It is obvious that \(e_q (1-q)z \) is an element of \(R \).

Now for \(f(z) \in R \), we have
\[e_q ((1-z))of(z) = \sum_{n=0}^{\infty} \frac{z^n}{[n]!} \cdot \sum_{n=0}^{\infty} a_n z^n \]

\[= \sum_{n=0}^{\infty} \frac{[n]!}{[n]!} a_n z^n \]

\[= \sum_{n=0}^{\infty} a_n z^n \]

\[= f(z). \]

Similarly,

\[f(z) \cdot e_q ((1-q)z) = \sum_{n=0}^{\infty} a_n z^n \cdot \sum_{n=0}^{\infty} \frac{z^n}{[n]!} \]

\[= \sum_{n=0}^{\infty} \frac{[n]!}{[n]!} a_n \frac{1}{[n]!} z^n \]

\[= \sum_{n=0}^{\infty} a_n z^n \]

\[= f(z). \]

Hence \(e_q ((1-q)z) \) is the identity \(* \) element of \(R \).

We remark that the remaining ring axioms are an complex fields—Hence we have the following theorem.

Theorem. \(R \) is a commutative ring with identity.

\(\S \) 3.3. In this section we are going to point out some of the
interesting properties of certain elements of \(R \). From what follows notations of the type \(E_q,^n((1-q)z) \) will mean

\[
E_q,^n((1-q)z) \equiv E_q((1-q)z) \circ E_q((1-q)z) \cdots \circ E_q((1-q)z)
\]

Since \(\sin_q((1-q)z), \sin_q((1-q)z), \cos_q((1-q)z), \cos_q((1-q)z), \sin_h_q((1-q)z), \sin_h_q((1-q)z), \cos_h_q((1-q)z), \cos_h_q((1-q)z) \) \(E_q((1-q)z) \) and \(E_q((1-q)z) \) are all elements of \(R \), for these elements, we have

(i) \(\cos_q,^n((1-q)z) + \sin_q,^n((1-q)z) = e_q((1-q)z) \)

(ii) \(\cos_q,^n((1-q)z) - \sin_q,^n((1-q)z) = e_q(-(1-q)z) \).

Now by \((1.3.17)\)

\[
\cos_q,^n((1-q)z) = \cos_q((1-q)z) \circ \cos_q((1-q)z)
\]

\[
= \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{[2n]!} \cdot \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{[2n]!}
\]

\[
= \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{[2n]!} \frac{(-1)^n z^{2n}}{[2n]!}
\]

\[
= \sum_{n=0}^{\infty} \frac{z^{2n}}{[2n]!} \ (3.3.1)
\]

Again, by \((1.2.16)\)
\[\sin_q, _2((1-q)z) = \sin_q((1-q)z) \cdot \sin_q((1-q)z)\]

\[= \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{[?n+1]!} \cdot \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{[2n+1]!}\]

\[= \sum_{n=0}^{\infty} \frac{2^{2n+1}}{[?n+1]!} \]

\[\text{(3.3.2)}\]

From (3.3.1) and (3.3.2) the results follows.

(iii) \[\cos_q((1-q)z) \cdot \cos_q((1-q)z) + \sin_q((1-q)z) \cdot \sin_q((1-q)z)\]

\[= E_q(-(1-q)z)\]

(iv) \[\cos_q((1-q)z) \cdot \cos_q(-(1-q)z) - \sin_q((1-q)z) \cdot \sin_q((1-q)z)\]

\[= E_q((1-q)z)\]

(v) \[\cos_q, _2((1-q)z) + \sin_q, _2((1-q)z) = \Phi_{\text{ee}} \left[\begin{array}{c} - ; (1-q)z/q^2 \\ \end{array} \right] \]

(vi) \[\cos_q, _2((1-q)z) - \sin_q, _2((1-q)z) = \Phi_{\text{eo}} \left[\begin{array}{c} - ; -(1-q)z/q^2 \\ \end{array} \right] \]

(vii) \[\cos_q, _n((1-q)z) + \sin_q, _n((1-q)z) = e_q((1-q)z) ; \]

\[\cos_q, _n((1-q)z) - \sin_q, _n((1-q)z) = e_q(-(1-q)z),\]
when \(n \) is an even positive integer.

\[(viii) \ \cos_{q,n}(1-qz) + \sin_{q,n}(1-qz) = \phi_{q,n}\left[\begin{array}{c} -(1-qz)/q^n \\ q^n \end{array}\right]\]

\[\cos_{q,n}(1-qz) - \sin_{q,n}(1-qz) = \phi_{q,n}\left[\begin{array}{c} -(1-qz)/q^n \\ q^n \end{array}\right]\]

\[(ix) \ \sin_{q,m}(1-qz) \cdot \sin_{q,m}(1-qz) + \cos_{q,m}(1-qz) = \phi_{q,m}\left[\begin{array}{c} -(1-qz)/q^m \\ q^m \end{array}\right]\]

\[\cos_{q,m}(1-qz) \cdot \cos_{q,m}(1-qz) - \sin_{q,m}(1-qz) \cdot \sin_{q,m}(1-qz) = \phi_{q,m}\left[\begin{array}{c} -(1-qz)/q^m \\ q^m \end{array}\right]\]

where \(m \) is any positive integer.

\[(x) \ \sin_{q}(1-qz) \cdot \cos_{q}(1-qz) = c \]

\[\sin_{q}(1-qz) \cdot \cos_{q}(1-qz) = c \]

\[\sin_{q}(1-qz) \cdot \cos_{q}(1-qz) = c \]

\[\sin_{q}(1-qz) \cdot \cos_{q}(1-qz) = c \]
(xi) \(\sin h_{q,n}((1-q)z) + \cos h_{q,n}((1-q)z) = e_q((1-q)z) \),
\(\cos h_{q,n}((1-q)z) - \sin h_{q,n}((1-q)z) = e_q(-(1-q)z) \),
where \(n \) is any positive integer.

(xii) \(\sin h_{q}((1-q)z) \) \(\sin h_{q}((1-q)z) + \cos h_{q}((1-q)z) \)
\(\cos h_{q}((1-q)z) = E_q((1-q)z) \),
\(\cos h_{q}((1-q)z) - \sin h_{q}((1-q)z) \)
\(\sin h_{q}((1-q)z) = E_q(-(1-q)z) \)

(xiii) \(\cos h_{q,m}((1-q)z) \) \(\cos h_{q,m}((1-q)z) + \sin h_{q,m}((1-q)z) \)
\(\cos h_{q,m}((1-q)z) = E_q(-(1-q)z) \)
\(\sin h_{q,m}((1-q)z) = \Phi \left[\begin{array}{c} - \n \end{array} \right] \left(\frac{(1-q)z}{q^m} \right) \)
\(\cos h_{q,m}((1-q)z) \) \(\cos h_{q,m}((1-q)z) - \sin h_{q,m}((1-q)z) \)
\(\sin h_{q,m}((1-q)z) \)
\(\Phi \left[\begin{array}{c} - \n \end{array} \right] \left(\frac{(1-q)z}{q^m} \right) \)
\(\Phi \left[\begin{array}{c} - \n \end{array} \right] \left(\frac{(1-q)z}{q^m} \right) \)
where \(m \) is any positive integer.

(xiv) \(\cos h_{q,m}((1-q)z) + \sin h_{q,m}((1-q)z) = E_q((1-q)z) \)
\(\Phi \left[\begin{array}{c} - \n \end{array} \right] \left(\frac{(1-q)z}{q^m} \right) \)}
\[\cosh q^m (1-q)z - \sinh q^m (1-q)z = \Phi_0 \begin{bmatrix} -; \frac{(-1)^m (1-q)z}{q^m} \\ \end{bmatrix} \]

\(m \) is any positive integer.

\((\pi)\) \(\sin q (1-q)z \) \(\cos q (1-q)z = 0 \)

\(\sin q (1-q)z \) \(\cos q (1-q)z = 0 \)

\(\sin q (1-q)z \) \(\cos q (1-q)z = 0 \)

\(\sin q (1-q)z \) \(\cos q (1-q)z = 0 \)

\((xvi)\) \(e_{q,m} (1-q)z = e_q (1-q)z \);

\[E_{q,m} (1-q)z = \Phi_0 \begin{bmatrix} -; \frac{(-1)^n (1-q)z}{q^n} \\ \end{bmatrix} \]

where \(n \) is any positive integer.

\((xvii)\)

\[\Phi_{1c} \begin{bmatrix} q^z ; (1-q)z \\ -; \end{bmatrix} \cdot \Phi_{1c} \begin{bmatrix} -; \end{bmatrix} \]

\[= \sum_{n=0}^{\infty} \frac{(q^z)^n z^n}{[n]!} \cdot \sum_{n=0}^{\infty} \frac{z^n}{(1-q)^n [n]!} \]

\[= \sum_{n=0}^{\infty} \frac{z^n}{[n]!} \cdot \frac{1}{(1-q)^n} \frac{z^n}{[n]!} \]

\[= e_q (1-q)z \]
Similarly,

\[
\Phi \left[\begin{array}{c} q^{a}, (1-q)z \\ -, q^{1/2} \end{array} \right] \circ \Phi \left[\begin{array}{c} -(1-q)z \\ q^{a} \end{array} \right] = \Phi \left[\begin{array}{c} -, (1-q)z \\ q^{a} \end{array} \right]
\]

\[
\Phi \left[\begin{array}{c} (1/4)n(n+1) \\ \Omega \end{array} \right]
\]

\[
= \sum_{n=0}^{\infty} \frac{(q^{a})^{n} q^{(1/2)n(n+1)}}{n!} \frac{(1/4)n(n+1)}{(q^{a})^{n} [n]!} z^n
\]

\[
= \sum_{n=0}^{\infty} \frac{(1/2)n(n+1)}{[n]!} z^n
\]

\[
= \Phi \left[\begin{array}{c} q^{a}, (1-q)z \\ (b_{v}), q^{l_{1}} \end{array} \right] \circ \Phi \left[\begin{array}{c} (c_{v}), (1-q)z \\ (a_{v}), q^{l_{2}} \end{array} \right]
\]

\[
= \Phi \left[\begin{array}{c} -(1-q)z \\ q^{a} \end{array} \right] \circ \Phi \left[\begin{array}{c} (c_{v}), (1-q)z \\ (a_{v}), q^{l_{1}+l_{2}} \end{array} \right]
\]

\[
= \sum_{n=0}^{\infty} \alpha \alpha_{n} z^{n}
\]

3.4 In this section, we are going to show that \(R \) is a Banach algebra.

Let \(c \) denote that field of complex numbers. For \(a \in c \) and \(f(z) \in R \), scalar multiplication is defined as

\[
a f(z) = \sum_{n=0}^{\infty} \alpha a_{n} z^{n}
\]
now it can easily be verified that the following theorem holds:

Theorem 1. The set R is a linear space over the field of complex numbers.

The next theorem is stated below.

Theorem 2. The set R is a commutative algebra with the identity element.

Proof. We have

$$
\lambda(f(z)) g(z) = \lambda \left(\sum_{n=0}^{\infty} a_n z^n \right) \cdot \left(\sum_{n=0}^{\infty} b_n z^n \right)
$$

$$
= \lambda \left(\sum_{n=0}^{\infty} [n]! a_n b_n z^n \right)
$$

$$
= \sum_{n=0}^{\infty} [n]! (\lambda a_n) b_n z^n
$$

$$
= \sum_{n=0}^{\infty} (\lambda a_n) z^n \cdot \left(\sum_{n=0}^{\infty} b_n z^n \right)
$$

$$
= \lambda \sum_{n=0}^{\infty} a_n z^n \cdot \left(\sum_{n=0}^{\infty} b_n z^n \right)
$$

$$
= (\lambda f(z)) g(z).
$$

Hence the theorem follows from the results of § 3.2.
Theorem and § 3.4 theorem

Now define the norm of \(f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathbb{R} \) by

\[
\| f(z) \| = \sup_n \left| \frac{a_n}{n!} \right|
\]

since \(\frac{1}{n!} a_n \) is bounded so \(\sup_n \left| \frac{a_n}{n!} \right| \) exists.

(i) Now \(\| f(z) \| = \sup_n \left| \frac{a_n}{n!} \right| \geq 0 \)

and \(\| f(z) \| = 0 \) iff \(\sup_n \left| \frac{a_n}{n!} \right| = 0 \)

i.e. \(\| f(z) \| = 0 \) for all \(n \).

i.e. iff \(f(z) = 0 \).

i.e. iff \(f(z) = \sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} 0 z^n = 0 \)

i.e. iff \(f(z) = 0 \).

(ii) \(\| f(z) + g(z) \| = \sup_n \left| \frac{a_n + b_n}{n!} \right| \)

\[
= \sup_n \left| \frac{a_n}{n!} \right| + \sup_n \left| \frac{b_n}{n!} \right|
\]

\(\leq \sup_n \left| \frac{a_n}{n!} \right| + \sup_n \left| \frac{b_n}{n!} \right| \)

i.e. \(\| f(z) + g(z) \| \leq \| f(z) \| + \| g(z) \| \)

i.e. \(\| f(z) + g(z) \| \leq \| f(z) \| + \| g(z) \| \)
(iii) \[|a f(z)| = |\sum_{n=0}^{\infty} a_n z^n| \]
\[= |\sum_{n=0}^{\infty} a_n z^n| \]
\[= \sup_n (n!) |a_n| \]
\[= \sup_n (n!) |a_n| \]
\[= |a| \sup (n!) |a_n| \]
\[= |a| |f(z)| \]

Hence we have the following result.

Theorem 3. \(R \) is a normed linear space.

Our next aim is to prove the following result.

Theorem 4. \(R \) is a Banach space.

Proof. Consider the sequence \(f_\lambda(z) \), where \(f_\lambda(z) = \sum_{n=0}^{\infty} a_{p_n} z^n \) is an element of \(R \).

Let the sequence be a Cauchy sequence. Hence there exists a positive integer \(p_\alpha \) for every \(\epsilon > 0 \) such that
\[|| f_p(z) - f_q(z) || < \varepsilon \text{ for } p, q \geq p_0. \]

Hence

\[\sup_{n} [n]! |a_{pn} - a_{qn}| < \varepsilon \text{ for } p, q \geq p_0. \]

This implies that

\[[n]! |a_{pn} - a_{qn}| < \varepsilon, \quad (3.4.1) \]

for \(p, q \geq p_0 \text{ and for every } n. \)

We regard \(n \) fixed and consider the sequence

\[a_{1n}, a_{2n}, a_{3n}, \ldots, a_{mn}, \ldots. \]

On account of (3.4.1) this sequence would converge to a limit \(a_n \) (say) according to Cauchy test from (3.4.1)

\[[n]! |a_n - a_{pn}| < \varepsilon, \quad (3.4.2) \]

for \(p \geq p_0 \text{ and for all } n. \)

Hence \([n]! |a_n| \) is bounded for

\[[n]! |a_n| = [n]! |a_n - a_{pn} + a_{pn}| \]

\[\leq [n]! |a_n - a_{pn}| + [n]! |a_{pn}| \]
Then \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) is an element of \(R \).

Now we find from (5.4.2) that

\[
\sup_n [n!] |a_n - a_{pn}| < \varepsilon, \text{ for } p > p_0
\]

that is

\[
|f_p(z) - f(z)| < \varepsilon, \text{ for } p > p_0
\]

Therefore \(f_p(z) \to f(z) \in R \) when \(p \to \infty \).

This implies that \(R \) is complete considering this result, the proof of the theorem follows from theorem 3.

Theorem 3. \(R \) is a commutative Banach algebra with identity element.

Proof. Let \(f(z) \) and \(g(z) \) be two elements of \(R \).

\[
|f(z) \circ g(z)| = \left| \sum_{n=0}^{\infty} [n!] a_n b_n z^n \right|
\]

\[
= \sup ([n!]^2 |a_n b_n|)
\]

\[
\leq \sup_n [n!] |a_n| \sup |b_n|
\]

\[
|f(z) \circ g(z)| \leq \|f(z)\| \|g(z)\|.
\]
Again \(e_q(1-q)z \) is the identity element of \(R \). For this element \(e_q((1-q)z) \), we have

\[
||e_q((1-q)z)|| = \sup_n \left[\frac{n!}{n^n} \right] = 1
\]

Hence the theorem.