CHAPTER VI

CERTAIN FORMULAS INVOLVING GENERALIZED BISERIAL
HYPERGEOMETRIC FUNCTIONS

§ 6.1. INTRODUCTION. In 1968, Manscha (56) have a formula involving hypergeometric functions. In establishing his formula he used the following unpublished result due to Rainville (54).

\[
P^{q}_{q} \left[\left(\begin{array}{c} \alpha_{p} \\ \beta_{q} \end{array} \right) ; x^{q} \right] = e^{t} \sum_{k=0}^{\infty} \frac{(t,\alpha_{q})_{t}}{(t,\beta_{q})_{t}} \left(\begin{array}{c} -k(\alpha_{q}) \\ k \end{array} \right) \frac{(z)^{k}}{k!}
\]

(6.1.1)

Srivastava (74) gave the following formulae

\[
\sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{(\beta_{q})_{n}} \left[\begin{array}{c} \alpha_{p}, b_{q}, \ldots, b_{q} \\ \lambda, a_{q} + n, \ldots, a_{q} + n \end{array} \right] z^{n} = e^{z} \sum_{k=0}^{\infty} \frac{(\lambda)^{k}}{(\beta_{q})_{k}} \left[\begin{array}{c} \alpha_{p}, \lambda, b_{q}, \ldots, b_{q} \\ \beta_{q}, a_{q} + n, \ldots, a_{q} + n \end{array} \right] z^{k}
\]

(6.1.2)

\[
\sum_{n=0}^{\infty} \frac{(\alpha_{j})_{n}}{(\beta_{q})_{n}} \left[\begin{array}{c} c_{p}, (c_{q})_{n} \\ d_{q}, (d_{q})_{n} \end{array} \right] z^{n} = e^{z} \sum_{k=0}^{\infty} \frac{(\alpha_{j})_{k}}{(\beta_{q})_{k}} \left[\begin{array}{c} c_{p}, (c_{q})_{k} \\ d_{q}, (d_{q})_{k} \end{array} \right] z^{k}
\]

(6.1.3)
In the present chapter a 'Bibasic' analogue of (6.1.1) has been obtained which has been used to establish a 'Bibasic' analogue of the formula due to Manocha.

The formula so established gives as a particular case, a q-analogue of a result due to Chaudhry [30] and also gives a Saalschützian summation theorem for Ψ_2.

'Bibasic' analogues of (6.1.2) and (6.1.3) have also been derived in this chapter and their applications discussed while studying the particular cases of the formulae derived in this chapter.

§ 6.2. In this section the following two Lemmas have been established using these Lemmas the 'Bibasic' analogue of a formula due to Manocha has been obtained in the form of a theorem.

Lemma 1. For $\lambda \geq 0$, $\lambda_1 \geq 0$, $|xt| < 1$, $|x| < 1$ and $|t| < 1$, we have

$$
\phi^{(s+1)} \left[\begin{array}{c}
q (a_r) ; -; x^t \\
\vdots \\
q (b_s) ; q_1 ; q^\lambda q_1
\end{array} \right] = q_1 (t q_1) \sum_{n=0}^{\infty} q_1 (t q_1) \phi^{(s+1)} \left[\begin{array}{c}
q (a_r) ; -n \\
\vdots \\
q (b_s) ; q_1 ; q^\lambda q_1
\end{array} \right] \frac{(1/2)n(n+1)(-t)^n}{[q_1]_n}.
$$

(6.2.1)
Proof. The right hand side of (6.1.4) is equal to

\[e_{q_1}(tq_1) \prod_{n=0}^{\infty} \sum_{k=0}^{n} \frac{\left[q^{(s)} \right]_k \left[q^{-n} \right]_k}{\left[q^{(s)} \right]_k \left[q_1 \right]_k \left[q \right]_n} \times \frac{(1/2)\lambda_1(k+1)}{q_1} \frac{(1/2)\lambda_1(k+1)}{q_1} \frac{(1/2)\mu(n+1)}{t_n} (-t)^n \]

\[= e_{q_1}(tq_1) \prod_{n=0}^{\infty} \sum_{k=0}^{n} \frac{\left[q^{(s)} \right]_k \left[q_1 \right]_k \left[q \right]_n (-t)^k}{\left[q^{(s)} \right]_k \left[q_1 \right]_k \left[q \right]_n} \times \frac{(1/2)\lambda_1(k+1)}{q_1} \frac{(1/2)\mu(n+1)}{t_n} (-t)^{n+k} \]

\[= e_{q_1}(tq_1) e_{q_1}(tq_1) \prod_{r=s+1}^{t} \left[\frac{(s_r)}{q_1} ; - ; \frac{q_1}{q_1} \right] \left[\frac{(s)}{q} ; q_1 ; q^\lambda q_1 \right] \]

This completes the proof of Lemma 1.

Lemma 2. For \(k > 0 \), \(\lambda_1 > 0 \) and \(|x| < 1 \), we have

\[x^n = \frac{\left[q^{(s)} \right]_n q_1^n}{\left[q^{(s)} \right]_n q_1^{n/2} \lambda_1(n+1) \mu(n+1)} \times \prod_{k=0}^{n} \frac{\left[q^{-n} \right]_k q_1^k}{\left[q_1 \right]_k} \prod_{r=s+1}^{t} \left[\frac{(s_r)}{q_1} ; q_1^{-k} ; q_1 \right] \]

\[\left[\frac{(s)}{q} ; q_1 ; q^\lambda q_1 \right] \]

..(6.2.2)
Proof. From (6.2.1), we have

\[\lim_{\lambda \to 0} \sum_{n=0}^{\infty} \frac{[q(a_r)]_n x^n q^{(1/2) \lambda (n+1)} (1/2) \lambda (n+1)}{[q_s]_n [q_1]_n} \]

Equating coefficients of \(t^n \) on both sides of (6.2.3) we get (6.2.2). Now by means of (6.2.2), we shall prove the following:

Theorem 1. For \(\lambda \geq 0, \lambda_1 \geq 0, |x_t| < 1, |x| < 1 \) and \(|t| < 1 \), we have

\[\Phi^{(n)}_{r+m-s+1} \left[\begin{array}{c}
(a_r) ; q_1 ; x \\
(b_s) ; q_1 ; q_1 \lambda
\end{array} \right] = \sum_{k=0}^{\infty} \frac{[q_1]_k q^n_1}{[q_1]_n} \]

\[\sum_{k=0}^{\infty} [q_1]_k \left[\begin{array}{c}
(c_m) \\
(d_p)
\end{array} \right]_k (\lambda (k+1) (-t))^k \]
where the series \(\Phi_p \) is a basic hypergeometric series on a single base \(q_1 \).

Proof. The left-hand side of (6.2.4) is equal to

\[
\sum_{n=0}^{\infty} \left[\begin{array}{c} (a_r) \n \n \end{array} \right]_n \left[\begin{array}{c} (c_m) \n \n \end{array} \right]_n q^n \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^n q^{n(n+1)} \left(\frac{1}{2}\right)^{n(n+1)} x^n t^n \]

\[
\sum_{n=0}^{\infty} \left[\begin{array}{c} (b_s) \n \n \end{array} \right]_n \left[\begin{array}{c} (d_p) \n \n \end{array} \right]_n q^n \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^n q^{n(n+1)} \left(\frac{1}{2}\right)^{n(n+1)} x^n t^n \]

\[
= \sum_{n,k=0}^{\infty} \left[\begin{array}{c} (c_m) \n \n \end{array} \right]_{n+k} q_1^{n+k} \left(\frac{1}{2}\right)^{n+k} \left(\frac{1}{2}\right)^{n+k} q^{(n+1)(\lambda+1)} (-1)^k x^n t^n \]

\[
\times \Phi_{r+1,s+1} \left[\begin{array}{c} (a_r) \n \n \end{array} \right]_{r+1} q_1^{-k} x \]

\[
\Phi_{r+1,s+1} \left[\begin{array}{c} (b_s) \n \n \end{array} \right]_{s+1} q_1^\lambda \lambda_{1} \]

\[\times \Phi_{r+1,s+1} \left[\begin{array}{c} (a_r) \n \n \end{array} \right]_{r+1} q_1^{-k} x \]

\[\times \Phi_{r+1,s+1} \left[\begin{array}{c} (b_s) \n \n \end{array} \right]_{s+1} q_1^\lambda \lambda_{1} \]

\[\times \Phi_{r+1,s+1} \left[\begin{array}{c} (a_r) \n \n \end{array} \right]_{r+1} q_1^{-k} x \]

\[\times \Phi_{r+1,s+1} \left[\begin{array}{c} (b_s) \n \n \end{array} \right]_{s+1} q_1^\lambda \lambda_{1} \]
This completes the proof of the theorem.

§6.3 In this section, the 'Bibasic' analogues of (6.1.2) and (6.1.3) have been obtained in the form of the following theorems.

Theorem 1. For \(|q| < 1\), \(|q_j| < 1\), \(|q_1| < 1\), and \(|z| < 1\), we have

\[
e_{q_1}(z) = \sum_{n=0}^{\infty} \frac{[q_1]_n [q_j]_n z^n}{[\bar{q}]_n [q_1]_n} q_1^{n+1} \left(\begin{array}{c} \frac{1}{2} \lambda (n+1) \\ \frac{1}{2} \lambda_1 (n+1) \end{array} \right) x
\]

\[
= \sum_{n=0}^{\infty} \frac{[q_1]_n [q_j]_n z^n}{[\bar{q}]_n [q_1]_n} q_1^{n+1} \left(\begin{array}{c} \frac{1}{2} \lambda (n+1) \\ \frac{1}{2} \lambda_1 (n+1) \end{array} \right) x
\]
Proof. The L.H.S. (6.3.1) is

\[e_{q_1} (z) \sum_{n,k=0}^{\infty} \frac{[q_1]_{n+k} [q]_{n+k} x^{n+k} z^k}{[q_1]_n [q]_n \frac{q^k}{n+k}} = (q_1^{\alpha+\kappa-1}) q_1^{\frac{1}{2} \lambda_1 n(n+1)} \frac{1}{q_1^{\frac{1}{2} n(n+1)}} \]

\[= e_{q_1} (z) \sum_{n=0}^{\infty} \frac{[q_1]_{n+k} [q]_{n+k} x^n q_1^{(1/2) \lambda_1 n(n+1)} (1/2) \lambda_1 n(n+1)}{[q_1]_n [q]_n \frac{q_1^{(1/2) \lambda_1 n(n+1)}}{q_1^{\frac{1}{2} n(n+1)}}} \]

\[= \sum_{n=0}^{\infty} \frac{[q_1]_{n+k} [q]_{n+k} x^n q_1^{(1/2) \lambda_1 n(n+1)} (1/2) \lambda_1 n(n+1)}}{[q_1]_n [q]_n} \times \sum_{k=0}^{n} \left[\frac{1}{k} \right] \left[\frac{1}{k} \right] \]

Finally, a direct generalization of (6.3.1) has been established in the form of the following theorems:
Theorem 2. For \(|x| < 1, |z| < 1, |q| < 1\) and \(|q_1| < 1\),

we have

\[
\sum_{n=0}^{\infty} \left[\left(\sum_{k=0}^{n} \binom{n}{k} \frac{a_{n-k}}{q_1^n \cdots q_1^1} \right) x^n \right] = \frac{1}{1 - (x z) q_1^n \cdots q_1^1}.
\]

The proof of (6.3.2) is straightforward.

§ 6.4. Particular Cases. In this section various particular cases of the results obtained in §6.2 and §6.3 have been given.

(i) We put \(q_1 = q, x = q, t = z/q, \lambda = s = \lambda_1, r = s = 3, m = 2\) and \(p = 1\) in (6.2.4) and then replace \(a_2, b_2\) and \(b_3\)
by d_1, c_1 and c_2 respectively, thus getting

$$
\Phi_1 \left[\frac{c_1, c_2; z}{q} \right] = \sum_{k=0}^{\infty} \frac{(1/3)^k (z-1)^k}{q_1^k q_2^k} \left[\frac{c_1}{q_1} \frac{c_2}{q_2} \right] (-z)^k
$$

$$(6.4.1)$$

(6.4.1) is a q-analogue of a result due to Chand [30].

(ii) Again, in (6.2.4) we put $r = s = \rho = 1$ and $m = 2,$

$$
\kappa = \omega = \lambda_1, \kappa = q, t = 1 \text{ and } q_1 = q \text{ and then replace } c_1 \text{ by } -c,
$$

using q-analogue of Vandermonde's theorem.

$$
\Phi_1 \left[\frac{q^a, q^{-a}; q}{q^{b}, q^{-b}} \right] = \frac{[b-a]_q [q^a]_q}{[q^b]_q}
$$

We arrive at the known result.

$$
\Phi_2 \left[\frac{-a, c_2; q}{c_1, d} \right] = \frac{[d-c]_q [q^a]_q}{[c_1]_q} \Phi_2 \left[\frac{-a, b-a, c; q}{1+a-d} \right]
$$

Putting $d = 1+a+b-c$, (6.4.2) yields Saalschützian Φ_2.

Some interesting particular cases of the result (6.3.1)
(a) Taking \(p = j = 1, \alpha = q, \xi_1 = q, \lambda = \sigma = \lambda_1 \) and applying q-analogue of Vandermonde's theorem, we get

\[
e_q(z_1) = \sum_{n=0}^{\infty} \frac{[\alpha]_n [\beta]_n q^n}{[\gamma]_n} \phi \left[\begin{array}{c} \alpha+\nu, \beta+\nu; \frac{z}{q^{\lambda-1}} \\ \alpha, \beta+\nu; q^2 \end{array} \right]_{(1-q^{-1})_\infty (1-q^{-1+\alpha+\alpha-\beta})_{\infty}}
\]

\[
= \frac{(1-q^{1-b})_{\infty} (1-q^{1+\alpha+\alpha-\beta})_{\infty}}{(1-q^{1+b})_{\infty} (1-q^{1+\alpha+\alpha-\beta})_{\infty}} \phi \left[\begin{array}{c} 1+\nu-b \\ \nu+b \\ \frac{z}{q^{\lambda-1}} \end{array} \right]_{(1-q^{-1})_\infty (1-q^{-1+\alpha+\alpha-\beta})_{\infty}}
\]

(6.4.2)

(b) Taking \(p = j, a_i = b_j, i = 1, 2, \ldots, p \) (or \(\sigma \)), \(\alpha = q, \lambda = \sigma = \lambda_1 \) in (6.4.1), we get

\[
e_q(z) = \sum_{n=0}^{\infty} \frac{[\gamma]_n c^n}{[\phi]_n} \phi \left[\begin{array}{c} \alpha+\nu; z q^{-\lambda-1} \\ \alpha; q^2 \end{array} \right]_{(1-q^{-1})_\infty (1-q^{1+\alpha+\alpha-\beta})_{\infty}}
\]

\[
= \frac{q J_\alpha \left(\frac{\sigma \tau}{i \alpha} \right)}{(i \alpha \tau)^{\alpha}}
\]

(6.4.3)

where \(J_\alpha \) is a basic analogue of Bessel function [36].

(c) Putting \(\alpha = \sigma, \lambda = \sigma = \lambda_1 \) and \(q = q_1 \) in (6.4.1),
we have

\[
\phi_q(z) = \sum_{n=0}^{\infty} \frac{z^n}{[q^n]_n} \prod_{j=1}^{p+1} \left[\frac{(a_p^j)^n q^2; x z/q^2}{(a_p^j)^n q^2; q^2} \right] \prod_{i=0}^{\infty} \left[\frac{(b_i^j)^n q^2; x}{(b_i^j)^n q^2} \right]
\]

(6.4.4)