ACKNOWLEDGEMENTS

First and foremost let me thank my God, who is from everlasting to everlasting and whose steadfast love, care and support I experienced during my stay at RRL.

It is with great pleasure that I place on record my deep sense of gratitude, respect and obligation to my research supervisor Dr. G. Vijay Nair for suggesting interesting research problem, his inspiration, constant encouragement and timely criticism.

I am grateful to the Director, Regional Research Laboratory, Trivandrum for providing me the necessary facilities for conducting research.

I would like to thank Prof. M. V. George for his role in creating an invigorating environment at RRL.

My sincere thanks are due to Dr. Nigam P. Rath of the University of Missouri, USA for single crystal X-ray analyses reported in this thesis, Dr. M. Vairamani of IICT Hyderabad for high resolution mass spectra and Dr. Patton Giles of CAS for his help in the nomenclature of some of the compounds reported in the thesis. Thanks are also due to Dr. A. C. Kunwar, IICT, Hyderabad for nOe studies, Dr. P. Shanmugam, Dr. Luxmi Varma, Dr. Jaya Prabhakaran and Ms. Soumini Mathew for providing NMR spectra, Mrs. S. Viji for elemental analyses, Mr. Robert Philip for GC-MS data and Dr. N. Manoj and Mr. Joby Eldo, Photochemistry Research Unit for their help in theoretical calculations.

I would like to express my sincere thanks to Dr. Davis Maliakal for the help and support extended to me for the successful completion of the work. Thanks are also due to all the present and former colleagues and friends in the Organic Chemistry Division and Photochemistry Research Unit for their help and co-operation during the course of my work.

Financial assistance from CSIR, New Delhi and the American Cyanamid Company (Agricultural Research Division), USA is gratefully acknowledged.

I take this opportunity to express my gratitude to the M. L. F. sisters for providing me the accommodation and for the care and concern bestowed upon me during the course of my Ph. D. work.

Finally, I love to place on record my deepest gratitude and appreciation to my Superiors and sisters of the Congregation of the Mother of Carmel and to my own family members and late Rev. Msgr. Ephrem Palathingal for their constant encouragement throughout my academic career.

Sr. P. M. Treesa

Trivandrum
February, 2001
CONTENTS

Declaration
Certificate
Acknowledgements
Preface
List of Abbreviations

CHAPTER 1

CYCLOADDITION REACTIONS OF o-QUINONE METHIDES: AN INTRODUCTION

1.1. General Introduction 1
1.2. Quinone methides 1
1.3. o-Quinone methides 2
1.3.1. General methods of preparation 3
1.3.2. Reactivity of o-quinone methides 4
1.3.3. Cycloaddition reactions of o-quinone methides 5
1.3.3.1. Intermolecular cycloaddition reactions 5
1.3.3.2. Intramolecular cycloaddition reactions 7
1.4. Heterocyclic quinone methides 10
1.4.1. Generation and reactions of heterocyclic quinone methides 10
1.5. 3-Methylene-2-oxoindoline derivatives 13
1.5.1. Cycloaddition reactions of 3-methylene-2-oxoindoline derivatives 13
CHAPTER 2

DIPOLAR CYCLOADDITION REACTIONS OF 2-OXOINDOLIN-3-YLIDENES

2.1. Introduction 23
2.1.1. Reaction with diazoalkanes 23
2.1.2. Reaction with azomethine ylides 24
2.1.3. Reaction with miscellaneous systems 28
2.2. Results and discussion 30
2.2.1. Reaction with six membered carbonyl ylides 31
2.2.2. Reaction with five membered carbonyl ylides 39
2.2.3. Theoretical calculations 46
2.3. Experimental details 48
2.4. References 64

CHAPTER 3

CYCLOADDITION REACTIONS OF 1-METHYL-3-METHYLENEQUINOLIN-2,4-DIONE

3.1. Introduction 66
CHAPTER 3

3.1.1. Quinolinone quinone methide: a versatile intermediate in organic synthesis 66
3.1.2. Generation and reactions of quinolinone quinone methides 67
3.1.3. The present work 73
3.2. Results and discussion 73
3.2.1. Reaction with cyclic dienes 74
3.2.2. Reaction with acyclic dienes 78
3.2.3. Reaction with vinyl ethers 83
3.2.4. Theoretical calculations 86
3.3. Experimental details 90
3.4. References 99

CHAPTER 4

CYCLOADDITION REACTIONS OF 3-METHYLENE-1,2,4-NAPHTHALENETRIONE AND CAN MEDIATED OXIDATIVE ADDITION OF 2-HYDROXY-1,4-NAPHTHO QUINONE

4.1. CYCLOADDITION REACTIONS OF 3-METHYLENE-1,2,4-NAPHTHALENETRIONE

4.1.1. Introduction 101
4.1.2. Results and discussion 103
4.1.2.1. Reaction with cyclic dienes 104
4.1.2.2. Reaction with acyclic dienes 106
4.1.2.3. Reaction with vinyl ethers 109
4.1.2.4. Theoretical calculations 111
4.1.3. Experimental details 113

4.2. CAN MEDIATED OXIDATIVE ADDITION OF 2-HYDROXY-1,4-NAPHTHOQUINONE

4.2.1. Introduction 121
4.2.1.1. General 121
4.2.1.2. Oxidative addition reactions mediated by CAN 121
4.2.2. Results and discussion 124
4.2.2.1. Reaction with cyclic dienes 124
4.2.2.2. Reaction with acyclic dienes 128
4.2.2.3. Mechanistic rationalization 129
4.2.3. Experimental details 130
4.3. References 136

Summary 139
List of Publications 142