CONTENTS

Abstract i-iv

Acknowledgements

1. Introduction 1

2. Diffusion of Boron in Silicon 6
 2.1 Introduction 6
 2.2 Nature of Diffusion 7
 2.2.1 Vacancy Diffusion 8
 2.2.2 Interstitial Diffusion 8
 2.2.3 External Interstitial Diffusion 9
 2.3 Simple One-Dimensional Diffusion Theory 9
 2.3.1 Ideal Diffusion Theory 10
 2.3.2 Concentration Dependent Diffusivities 13
 2.3.2.1 Constant Surface Concentration 13
 2.3.2.2 Constant Total Dopant 14
 2.3.3 Temperature Dependence of Diffusivities 15
 2.4 Atomic Diffusion Mechanism 16
 2.5 Evaluation Techniques for Diffused Layers 19
 2.5.1 Junction Depth 20
 2.5.2 Sheet Resistance 20
 2.6 Deviation from Simple One-Dimensional Diffusion Theory 22
 2.6.1 Effect of Oxidation on Impurity Redistribution 22
 2.6.2 Lateral Diffusion Effects 24
 2.6.3 Emitter Push Effect 24
 2.6.4 The Electric field Effect 25
3. Modelling of Boron Diffusion in Silicon

3.1 Anomalous Diffusion of Boron in Silicon
3.2 Diffusion of Boron under Non-Oxidising conditions
3.3 Diffusion of Boron Under Oxidising Conditions
 3.3.1 Redistribution of Impurities During Thermal Oxidation
 3.3.1.1 The Partial Differential Formulation
 3.3.1.2 The Integro Differential Formulation
 3.3.2 Anomalous Effects of Oxidation on Boron Diffusion
3.4 Diffusion of Boron Through Patterned Silicon
 3.4.1 Effect of Masking Oxide
3.5 Discussion

4. Experimental Study of the Effects of Masking Oxide on Boron Diffusion

4.1 Resistor Fabrication Using Silicon Etching
4.2 Diffusion Using Other Sources
4.3 Diffusion Through Polysilicon
4.4 Doping of Oxide
4.5 Surface Concentration
4.6 Possible Models of the Masking Oxide Effects
 4.6.1 Lateral Diffusion
 4.6.2 The Mismatch between the Linear Coefficients of Thermal Expansion of Si and SiO₂
4.6.3 The Affinity of Boron Towards Oxide
4.6.4 The Surface Diffusion of Impurities over silicon
4.7 Silicon Nitride as the Masking Material
4.8 Experimental Results
 4.8.1 Silicon Dioxide Masking
 4.8.2 Silicon Nitride Masking
 4.8.3 Silox/Nitride Masking
 4.8.4 Thermal Oxide/Nitride Masking
 4.8.5 Thermal Oxide Covered by Nitride
 4.8.6 Thermal Oxide Partially covered by Nitride
4.9 Discussion

5. Numerical Solution of Equations Required for Development of Diffusion Models
 5.1 Explicit Scheme
 5.2 Implicit Scheme

6. Development of Quantitative Models for Diffusion in Silicon Bulk
 6.1 Anomalies in Boron Diffusion into Silicon
 6.1.1 N.D. Thai Model
 6.1.2 Andersons and Gibbons Model
 6.1.3 S. Motsumuto, Y. Ishikawa Model
 6.1.4 Kim, Zhu, Kong and Shano Model
 6.1.5 Gaiseanu Model
 6.2 Development of Algorithm
7. Modelling of Boron Diffusion Through Patterned Silicon

7.1 The Steady State Surface Diffusion Model.

7.2 Time Dependent Surface Diffusion Model
 7.2.1 The values of Different Parameters
 7.2.2 The Discrepancy between sp and sm
 7.2.3 The window frame width and window width Effects.

7.3 The Increased Value of Flux over the Oxide

7.4 The Results of Numerical Calculations with Modified Program
 7.4.1 The Discrepancy between sp and sm
 7.4.2 The Window Frame Width Effect
 7.4.3 The Window Width Effect
 7.4.4 The 1 mm Window
 7.4.5 The Results on a Large Sheet
 7.4.6 The Results with Oxide covered by Nitride
 7.4.7 The Results with Oxide Partially covered by Nitride
 7.4.8 The variation of Discrepancy with Time of Diffusion

7.5 Modification of the Preliminary Model

7.6 Development of the Improved Model

7.7 Development of Algorithm

8. Discussions, Conclusions and Suggestions for Future Work

8.1 Diffusion of Boron in plain silicon

8.2 Diffusion of Boron into Silicon with oxide Masking
8.3 The Diffusion of Boron into Silicon with Nitride Masking 121
8.4 The Surface Diffusion Model 122
8.5 Suggestions for future work 123

Appendix A
Appendix B
Appendix C
Appendix C1
Appendix D
Appendix E1
Appendix E2
Appendix E3
Appendix E4
Appendix F1
Appendix F2
Appendix F3
Appendix F4
Appendix G1
Appendix G2
Appendix G3

References