## Contents

<table>
<thead>
<tr>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Contents</td>
<td>xx</td>
</tr>
<tr>
<td>List of figure's</td>
<td>xxiii</td>
</tr>
<tr>
<td>List of table’s</td>
<td>xxv</td>
</tr>
<tr>
<td>Appendices</td>
<td>xxvi</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

### Chapter 1: Introduction

1.1 MHD power generation 1
1.2 Plasma based MHD power converters 1
1.3 Liquid Metal MHD power converters 3
   1.3.1 Liquid metal MHD power conversion system of gravity type 5
   1.3.2 Inertial type liquid metal MHD power conversion system 10
1.4 Specific objective of the thesis 12
1.5 Global status of LMMHD PC technology 13
1.6 Thesis organisation 15

### Chapter 2: Literature survey

2.1 Introduction 17
2.2 Models for two-phase flow 18
   2.2.1 Mixture (diffusion) models 18
Chapter 3: Two-fluid flow modelling

3.1 Introduction
3.2 One-dimensional steady state two-fluid equations
3.3 Interfacial momentum transfer terms
   3.3.1 Drag force
   3.3.2 Virtual mass force
3.4 Flow classification
3.5 Equations for numerical computation
3.6 Diameter of the bubble in the mixer distributor
3.7 Initial conditions
3.8 Numerical solution

Chapter 4: Experimental validation of the model

4.1 Introduction
4.2 Experimental facility
4.3 Method of void fraction determination
4.4 Measured void fraction profiles
4.5 Comparison of calculated and measured void fractions
4.6 Comparison of calculated and measured pressure values

Chapter 5: Basic design of a prototype LMMHD PC system in the range of 200-250 kWe

5.1 Introduction
5.2 Modelling of LMMHD PC loop
5.3 Loop calculation
5.4 Design of 230 kWe two-loop LMMHD PC system 77
5.5 Detailed parametric analysis 87

**Chapter 6: Summary and Conclusions**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Summary and conclusions</td>
<td>99</td>
</tr>
<tr>
<td>6.2</td>
<td>Recommendations of scope of future studies</td>
<td>101</td>
</tr>
</tbody>
</table>

References 102
Publications 142