CONTENTS

CHAPTER 1 : General Introduction

1.1 Mathematical Formulations of vibrational motion of polyatomic molecules
1.2 Vibrational Energy Levels and Eigen Functions
1.3 Degenerate Vibrations
1.4 Symmetry of Normal Vibration and Normal Eigen Functions
1.5 Selection Rules
1.6 Vibrational Spectra of Benzene
1.7 Vibrational Raman Spectra of Substituted Benzenes
1.8 Laser Raman Spectra of Benzene and Substituted Benzenes
1.9 The Electronic Absorption Spectra of Benzene and its Derivatives
References

CHAPTER 2: Experimental Techniques

2.1 Introduction
2.2 Theory of FT-Raman Spectrometer
2.3 Description of Laser Raman Spectrometer
2.4 FTIR Spectrophotometer
2.5 UV-visible Double Beam Spectrophotometer
References

CHAPTER 3: Laser Raman, FTIR and Electronic Absorption Spectra of 2,3,5-Triiodobenzoic acid

3.1 Introduction
3.2 Experimental Details
3.3 Results and Discussion
3.3.1 C-H Stretching vibrations
3.3.2 C-H in-plane-bending vibrations.
3.3.3 C-H out-of-plane bending vibrations
3.3.4 C-C vibrations:
3.3.5. C-COOH vibrations 84
3.3.6. C-I vibrations. 85
3.4. Group vibrations 86
3.4.1. O-H stretching vibration 86
3.4.2. O-H in-plane bending and C-O stretching vibrations. 86
3.4.3. O-H out-of-plane bending vibration. 87
3.4.4. C=O stretching vibration. 87
3.4.5. C=O out-of-plane bending vibration. 88
3.4.6. Hydrogen bond fundamental. 88

References 89

CHAPTER 4: Laser Raman, FTIR and Electronic Absorption Spectra of 3ß-Tosyl Cholest-5-ene

4.1. Introduction 93
4.2. Experimental Details 94
4.3. Results and Discussion 102
4.3.1. C-H Stretching ring vibrations- 112
4.3.2. C-H in plane deformation and Ring Breathing modes- 112
4.3.3. C-H out-of-plane bending vibrations 113
4.3.4. C-S stretching vibrations 113
4.3.5. S-O stretching vibrations 114
4.3.6. Angular methyl group vibrations 114
4.3.7. CH₂ vibrations 117

References 118


5.1. Introduction 122
5.2. Experimental Details 123
5.3. Results and Discussion 128
5.3.1. C-H Stretching ring vibrations- 132
5.3.2. C-H in plane deformation and Ring Breathing modes- 132