LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Simplified Diagram of the Heterogeneous Photocatalytic Process</td>
<td>15</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Spectra Classification and Solar Irradiance Spectra (a) At Atmosphere, (b) At Sea Level</td>
<td>16</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Band Gap Positions (Top of Valence Band and Bottom of Conduction Band) in Various Semiconductors. The Energy Scale is Indicated in Electron Volts Using either the Vacuum Level (Left) or the Normal Hydrogen Electrode (NHE) (Right) as a Reference</td>
<td>17</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>XRD Pattern of TiO₂ Degussa P-25</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>SEM Micrographs of TiO₂ Degussa P-25</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Photocatalytic Chamber</td>
<td>56</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Experimental Setup for Photocatalytic Process. 1: UV Lamps-5 (30 W); 2: Chamber; 3: Jacketed Reactor; 4: Magnetic Bead; 5: Magnetic Stirrer; 6: Lab Jack</td>
<td>56</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Photoreactor Vessel</td>
<td>57</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Lutron UV-340 Light Meter</td>
<td>57</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>pH Meter (Thermo Orion 920A)</td>
<td>58</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Thermo Orion Aqua Fast II AQ 2040 COD Meter</td>
<td>58</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>UV-Vis Spectrophotometer (Shimadzu 1650)</td>
<td>59</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>UV-DR Perkin Elmer Lamda 750 UV/Vis/NIR Spectrophotometer</td>
<td>59</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>XRD Rigaku D/Max-III C Diffractometer</td>
<td>60</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Scanning Electron Microscope (SEM, Hitachi-S-3400N)</td>
<td>60</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>LC/MS (Water Alliance 2795 LC)</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>GC/MS (Polaris Q Thermo Electron Corporation)</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.13</td>
<td>Cause and Effect Diagram</td>
<td>69</td>
</tr>
<tr>
<td>Figure 3.14</td>
<td>Procedure of Response Surface Methodology</td>
<td>71</td>
</tr>
</tbody>
</table>
Figure 4.1.1 : Mechanism of Heterogeneous Photocatalysis under UV and Visible Light 75

Figure 4.2.1 : Time-Dependent UV–Vis Absorption Spectra for Decolourization of MG using TiO$_2$ under UV Irradiation 82

Figure 4.2.2 : Photocatalytic Decolourization of MG (Dye Initial Concentration—50 mg/L, pH—4, Catalyst Dose—1 g/L) 82

Figure 4.2.3 : Effect of Catalyst Dose on Decolourization of MG under UV Irradiation (Dye Initial Concentration—50 mg/L, pH—4, Time: 2 h) 83

Figure 4.2.4 : Effect of pH on Decolourization of MG under UV Irradiation (Dye Initial Concentration—50 ppm, Catalyst Dose—1 g/L, Time: 2 h) 83

Figure 4.2.5 : Effect of Initial Concentration of MG on Percentage Decolourization under Optimized Conditions (Catalyst Dose—1 g/L, pH—4, Time: 2 h) 84

Figure 4.2.6 : Time-Dependent UV–Vis Absorption Spectra for Decolourization of MG using TiO$_2$ under Solar Irradiation 84

Figure 4.2.7 : Effect of Catalyst Dose on Decolourization of MG under Solar Irradiations (Dye Initial Concentration—50 mg/L, pH—4, Time: 0.5 h) 85

Figure 4.2.8 : Effect of pH on Decolourization of Malachite Green under Solar Irradiation (Dye Initial Concentration—50 ppm, Catalyst Dose—1 g/L, Time: 0.5 h) 85

Figure 4.2.9 : Comparison of Solar/UV Irradiation on Photocatalytic Decolourization of MG under Optimized Conditions (Dye Initial Concentration—50 ppm, Catalyst Dose—1 g/L, pH—4 for TiO$_2$, pH—8 for ZnO, Time: 0.5 h) 86

Figure 4.2.10 : UV-Vis Spectral Changes of AO7 under UV Light Irradiation (a) TiO$_2$ (b) ZnO (Dye Initial Concentration—25 ppm, pH—7, Catalyst Dose—1 g/L) 93

Figure 4.2.11 : Photocatalytic Decolourization of AO7 (Dye Initial Concentration—25 mg/L, pH—7, Catalyst Dose—1 g/L) 94

Figure 4.2.12 : Effect of Catalyst Dose on Decolourization of AO7 under UV Irradiation (Dye Initial Concentration—25 ppm, Time: 2.5 h) 94
Figure 4.2.13 : Effect of pH on Decolourization of AO7 under UV Irradiation (Dye Initial Concentration—25 ppm, Catalyst Dose—1 g/L)

Figure 4.2.14 : Effect of Concentration of AO7 on Decolourization (Catalyst Dose—1 g/L, pH—7, Time: 2.5 h)

Figure 4.2.15 : Kinetic Analysis of AO7 under Optimized Conditions, (a) With TiO₂ (b) With ZnO

Figure 4.2.16 : UV-Vis Spectral Changes of AO7 under Solar Light Irradiation (Dye Initial Concentration—25 ppm, pH—7, Catalyst Dose—1 g/L)

Figure 4.2.17 : Effect of Catalyst Dose on Decolourization of AO7 under Solar Irradiation (Dye Initial Concentration—25 ppm, Time: 1h)

Figure 4.2.18 : Effect of pH on Decolourization of AO7 under Solar Irradiation (Dye Initial Concentration—25 ppm, Catalyst Dose—1 g/L)

Figure 4.2.19 : Comparison of Solar/UV Irradiation on Photocatalytic Decolourization of AO7 under Optimized Conditions (Dye Initial Concentration—25 ppm, Catalyst Dose—1 g/L, pH—7 for TiO₂, pH—8 for ZnO, Time: 1 h)

Figure 4.2.20 : Time-Dependent UV–Vis Absorption Spectra for Decolourization of RB160 using ZnO

Figure 4.2.21 : Photocatalytic Decolourization of RB160 Dye (Dye Initial Concentration—25 mg/L, pH—7, Catalyst Dose—1 g/L)

Figure 4.2.22 : Effect of TiO₂ Dose on Decolourization Rate of RB160 Dye (Dye Initial Concentration—25 mg/L, pH—7)

Figure 4.2.23 : Effect of ZnO Dose on Decolourization Rate of RB160 Dye (Dye Initial Concentration—25 mg/L, pH—7)

Figure 4.2.24 : Effect of pH on Decolourization Rate of RB160 Dye (Dye Initial Concentration—25 mg/L, TiO₂ Dose—1.5 g/L, ZnO Dose—1 g/L)

Figure 4.2.25 : Effect of Initial Concentration of RB160 Dye on Percentage Decolourization under Optimized Conditions (TiO₂ dose—1.5 g/L, ZnO Dose—1 g/L, pH—7)

Figure 4.2.26 : Kinetics Analysis for RB160 Dye under Optimized Conditions a) ZnO b) TiO₂

Figure 4.2.27 : Percentage COD Reduction Studies of RB 160

Figure 4.2.28 : Time-Dependent UV–Vis Absorption Spectra for
Decolourization of RB160 using TiO$_2$ under Solar Irradiation

Figure 4.2.29: Effect of Catalyst Dose on Decolourization of RB160 under Solar Irradiation (Dye Initial Concentration—25 ppm, Time: 2 h for TiO$_2$, 0.5 h for ZnO, pH—7)

Figure 4.2.30: Effect of pH on Decolourization of RB160 under Solar Irradiation (Dye Initial Concentration—25 ppm, Catalyst Dose—1 g/L)

Figure 4.2.31: Comparison of Solar/UV Irradiation on Photocatalytic Decolourization of RB160 under Optimized Conditions (Catalyst Dose—1 g/L, pH—4, Time: 1 h for TiO$_2$, pH—7, Time: 0.5 h for ZnO)

Figure 4.2.32: Time-Dependent UV–Vis Absorption Spectra for Decolourization of RR35 using TiO$_2$

Figure 4.2.33: Photocatalytic Decolourization of RR35 Dye (Dye Initial Concentration—25 mg/L, pH—7, Catalyst Dose—1 g/L)

Figure 4.2.34: Effect of TiO$_2$ Dose on Decolourization Rate of RR35 Dye (Dye Initial Concentration—25 mg/L, pH—7)

Figure 4.2.35: Effect of ZnO Dose on Decolourization Rate of RR35 Dye (Dye Initial Concentration—25 mg/L, pH—7)

Figure 4.2.36: Effect of pH on Decolourization Rate of RR35 Dye (Dye Initial Concentration—25 mg/L, TiO$_2$ Dose—1.5 g/L, Time: 3 h, ZnO Dose—1 g/L, Time: 45 min.)

Figure 4.2.37: Effect of Initial Concentration of RR35 Dye on Percentage Decolourization under Optimized Conditions (TiO$_2$ Dose—1.5 g/L, ZnO Dose—1 g/L, pH—7)

Figure 4.2.38: Kinetics Analysis for RR35 Dye under Optimized Conditions a) ZnO b) TiO$_2$

Figure 4.2.39: Time-Dependent UV–Vis absorption Spectra for Decolourization of RR35 using TiO$_2$ under Solar Irradiation

Figure 4.2.40: Effect of Catalyst Dose on Decolourization of RR35 under Solar Irradiation (Dye Initial Concentration—25 ppm, Time: 1.5 h, pH—7)

Figure 4.2.41: Effect of pH on Decolourization of RR35 under Solar Irradiation (Dye Initial Concentration—25 ppm, TiO$_2$—1.5 g/L, ZnO—1 g/L, Time: 1 h)

Figure 4.2.42: Comparison of Solar/UV Irradiation on Photocatalytic Decolourization of RR355 under
Optimized Conditions (Dye Initial Concentration—25 ppm, pH—4 for TiO$_2$ (1.5 g/L), pH—8 for ZnO (1 g/L), Time: 1 h)

Figure 4.3.1 : UV/Vis Spectral Changes of Acid Orange 7 with Irradiation Time (0-15 h)

Figure 4.3.2 : Absorbance Changes of Spectral Peaks (230, 311 and 484 nm) as Function of Irradiation Time of Acid Orange 7

Figure 4.3.3 : Chromatogram of C.I. Acid Orange 7 (2 h)

Figure 4.3.4 : Chromatogram of C.I. Acid Orange 7 (15 h)

Figure 4.3.5 : Mass Spectrum of Intermediate A

Figure 4.3.6 : Mass Spectrum of Intermediate B

Figure 4.3.7 : Mass Spectrum of Intermediate C

Figure 4.3.8 : Mass Spectrum of Intermediate D

Figure 4.3.9 : Mass Spectrum of Intermediate E

Figure 4.3.10 : Mass Spectrum of Intermediate F

Figure 4.3.11 : MS Interpretation of Intermediates of CI Acid Orange 7

Figure 4.3.12 : Oxidation of Naphthalene Ring of AO7 to Carboxylic Acids

Figure 4.3.13 : Symmetrical Cleavage of Azo Bond of AO7

Figure 4.3.14 : Mineralization of Photodegraded Product of AO7

Figure 4.3.15 : GC Chromatogram of Irradiated Solution of RB160 after 20 min

Figure 4.3.16 : GC Chromatogram of Irradiated Solution of RB160 after 30 min

Figure 4.3.17 : GC Chromatogram of Irradiated Solution of RB160 after 40 min

Figure 4.3.18 : GC Chromatogram of Irradiated Solution of RB160 after 1 h

Figure 4.3.19 : GC Chromatogram of Irradiated Solutions of RB160 after 2 h

Figure 4.3.20 : GC Chromatogram of Irradiated Solutions of RB160 after 4 h

Figure 4.3.21 : GC Chromatogram of DCM Extracts of Irradiated Solution of RB160 after 8h

Figure 4.3.22 : Liquid Chromatogram of irradiated solution of RB160 after 1 h of Photodegradation

Figure 4.3.23 : Proposed Degradation Pathway of RB160 Dye with ZnO under Optimized Conditions
Figure 4.3.24 : Absorbance Changes of Spectral Peaks (234, 310 and 536 nm) of RR35 at as Function of Irradiation Time in Aqueous Solution

Figure 4.3.25 : Liquid Chromatogram of Irradiated Solution of RR35 after 40 min

Figure 4.3.26 : Liquid Chromatogram of Irradiated Solutions of RR35 after 1 h

Figure 4.3.27 : Liquid Chromatogram of Irradiated Solutions of RR35 after 4 h

Figure 4.3.28 : Liquid Chromatogram of Irradiated Solution of RR35 after 8 h

Figure 4.3.29 : Mass Spectrum of Intermediate A

Figure 4.3.30 : Mass Spectrum of Intermediate B

Figure 4.3.31 : Mass Spectrum of Intermediate C

Figure 4.3.32 : Mass Spectrum of Intermediate D

Figure 4.3.33 : Mass Spectrum of Intermediate E

Figure 4.3.34 : Mass Spectrum of Intermediate F

Figure 4.3.35 : GC Chromatogram of Irradiated Solution of RR35 after 20 Min

Figure 4.3.36 : GC Chromatogram of Irradiated Solution of RR35 after 40 Min

Figure 4.3.37 : GC Chromatogram of Irradiated Solution of RR35 after 1 h

Figure 4.3.38 : GC Chromatogram of Irradiated Solution of RR35 after 2 h

Figure 4.3.39 : GC Chromatogram of Irradiated Solution of RR35 after 4 h

Figure 4.3.40 : GC Chromatogram of Irradiated Solution of RR35 after 8 h

Figure 4.3.41 : Proposed Degradation Pathway of RR35 Dye with TiO₂ under Optimized Conditions

Figure 4.4.1 : Effect of Variation of ratio of Catalysts on Degradation of Malachite Green (Dye Initial Concentration-50 ppm, pH 4, Time: 2 h)

Figure 4.4.2 : Kinetic Analysis of MG under Optimized Conditions

Figure 4.4.3 : Time-dependent UV–Vis Absorption Spectra for Decolourization of MG using ZnO: TiO₂ (9:1) under Solar Irradiation

Figure 4.4.4 : Comparison of Solar/UV Irradiation on Photocatalytic Activity of ZnO: TiO₂ (9:1) for MG
Figure 4.4.5 : XRD Pattern of TiO$_2$
Figure 4.4.6 : XRD Pattern of ZnO
Figure 4.4.7 : XRD Pattern of ZT$_9$
Figure 4.4.8 : XRD Pattern of ZT
Figure 4.4.9 : XRD Pattern of Z$_5$T
Figure 4.4.10 : Plot of ($\alpha h\nu$)$^{1/2}$ vs $h\nu$ for ZT$_9$
Figure 4.4.11 : Plot of ($\alpha h\nu$)$^{1/2}$ vs $h\nu$ for Z$_5$T
Figure 4.4.12 : Plot of ($\alpha h\nu$)$^{1/2}$ vs $h\nu$ for ZT
Figure 4.4.13 : Plot of ($\alpha h\nu$)$^{1/2}$ vs $h\nu$ for TiO$_2$
Figure 4.4.14 : Plot of ($\alpha h\nu$)$^{1/2}$ vs $h\nu$ for ZnO
Figure 4.4.15 : SEM Surface Morphology of ZT$_9$ Coupled Oxide (1 bar length = 1000 nm (a), 300 nm (b), 100 nm (c))
Figure 4.4.16 : SEM Surface Morphology of Heterostructured ZT Nanophotocatalyst (1 bar length = 100 nm, 50 nm)
Figure 4.4.17 : SEM Surface Morphology of heterostructured Z$_5$T Nanophotocatalyst (1 bar length = 300 nm)
Figure 4.4.18 : p–n Junction Formation Model and the Schematic Diagram of electron–hole Separation Process
Figure 4.4.19 : Time Dependent UV Absorption Spectra of AO7 during Course of Reaction (Dye Initial Concentration-25, pH-7, ZT$_9$-1 g/L)
Figure 4.4.20 : Effect of pH on Decolourization of AO7 (Initial Dye Concentration-25 ppm; Catalyst Dose-1 g/L; Time: 2.30 h)
Figure 4.4.21 : Effect of pH on Decolourization of AO7 (Dye Initial concentration-25 ppm, Catalyst Dose-1 g/L, Time: 2.30 h)
Figure 4.4.22 : Photocatalytic Efficiency of Different Catalyst for AO7 (Dye Initial concentration-25 ppm, pH-7, Time: 2.30 h)
Figure 4.4.23 : Photocatalytic Efficiency of Different Catalyst for AO7 (Dye Initial Concentration-25 ppm, pH-8, Time: 2.30 h)
Figure 4.4.24 : SEM Surface Morphology of Pure TiO$_2$
Figure 4.4.25 : SEM Surface Morphology of N-doped TiO$_2$
Figure 4.4.26 : SEM Surface Morphology of Manganese and Nitrogen Codoped TiO$_2$ ($\text{Ti}_{1-x}\text{Mn}_x\text{O}_{2-y}\text{N}_y$)
Figure 4.4.27 : XRD Pattern of Manganese and Nitrogen Codoped TiO$_2$ ($\text{Ti}_{1-x}\text{Mn}_x\text{O}_{2-y}\text{N}_y$) calcinated at 100 °C
Figure 4.4.28 : XRD Pattern of Manganese and Nitrogen Codoped TiO$_2$ (Ti$_{1-x}$Mn$_x$O$_{2-y}$N$_y$) calcinated at 400 °C

Figure 4.4.29 : XRD Pattern of Manganese and Nitrogen Codoped TiO$_2$ (Ti$_{1-x}$Mn$_x$O$_{2-y}$N$_y$) calcinated at 600°C

Figure 4.5.1 : Normal Probability Plot of Residuals for Percentage Degradation of RB160

Figure 4.5.2 : Plot of Actual vs. Predicted Response for Percentage Degradation of RB160

Figure 4.5.3 : Effect of pH (A) and Catalyst Dose (C) on Percentage Degradation of RB160

Figure 4.5.4 : Effect of Concentration of Dye (B) and Catalyst Dose (C) on Percentage Degradation of RB160

Figure 4.5.5 : Effect of pH (A) and Concentration of Dye (B) on Percentage Degradation of RB160

Figure 4.5.6 : Normal Probability Plot of Residuals for Percentage COD Reduction of RB160

Figure 4.5.7 : Plot of Actual vs. Predicted Response for Percentage COD Reduction of RB160

Figure 4.5.8 : Effect of pH (A) and Catalyst Dose (C) on Percentage COD Reduction of RB160

Figure 4.5.9 : Effect of Concentration (B) and Catalyst Dose (C) on Percentage COD Reduction of RB160

Figure 4.5.10 : Effect of pH (A) and Concentration (B) on Percentage COD Reduction of RB160

Figure 4.5.11 : Percentage Degradation of Dye Bath Water and Real Wastewater under Optimized Conditions.