Contents

1 Z-scan Technique

1 Characterization of Nonlinear Optical Materials
 1.1 Nonlinear Optical Properties and Materials
 1.1.1 Introduction to Nonlinear Optics
 1.1.2 Descriptions of Nonlinear Optical Interactions
 1.1.3 Nonlinear Optical Materials
 1.2 Measurement Techniques for NLO Properties
 1.2.1 Degenerate Four Wave Mixing (DFWM)
 1.2.2 Nearly Degenerate Four-Wave Mixing
 1.2.3 Ellipse Rotation
 1.2.4 Beam Distortion Measurements
 1.2.5 Photothermal and Photoacoustic Techniques
 1.2.6 Z-scan
 1.3 Z-scan: Experimental Technique and Theory
 1.3.1 Experimental Technique
 1.3.2 Theory
 1.3.3 Advantages & Disadvantages of Z-scan over other Techniques
 1.3.4 Possible Variants of the Z-scan Experiment
 1.4 Conclusions

2 Nonlinear Absorption and Nonlinear Refraction in Metal Phthalocyanines
 2.1 Introduction
 2.2 Porphyrins and Phthalocyanines
 2.3 Closed Aperture Z-scan to Study Nonlinear Refraction
 2.3.1 Experimental Arrangement
 2.3.2 Detailed theory for Closed Aperture Z-scan
 2.4 Nonlinear Refraction Measurements in Metal Phthalocyanines
 2.4.1 Nonlinear Refraction Coefficient
 2.4.2 Significance of Nonlinear Refraction
 2.4.3 Nonlinear Refraction Cross-section
 2.5 Open aperture Z-scan to Study Nonlinear Absorption
 2.5.1 Detailed theory for Open Aperture Z-scan
2.6 Nonlinear Absorption Measurements in Metal Phthalocyanines
2.6.1 Induced Absorption in Pc's - Reverse Saturable Absorption
2.6.2 Nonlinear Absorption Coefficient
2.7 Optical Limiting in RSA Materials
2.7.1 Experimental set up
2.7.2 Optical Limiting Performance of ZnPc
2.7.3 Optical Limiting Curves and Open Aperture Z-scan Data
2.8 Conclusions

3 Excited State Absorption Spectrum Using Z-scan
3.1 Introduction
3.2 Nonlinear Absorption
3.2.1 Reverse Saturable Absorption (RSA)
3.2.2 Saturable Absorption (SA)
3.3 Measurement of Nonlinear Absorption in the Presence of RSA and SA
3.3.1 Theory
3.4 Cross-over from RSA to SA
3.4.1 Explanations for the RSA Behavior in ZnPc
3.4.2 Figure of Merit for RSA materials, σ_e/σ_g
3.4.3 Calculation of Exited State Absorption Cross-section
3.5 Spectrum of Third Order Susceptibility
3.5.1 Effective Nonlinear Absorption Coefficient
3.5.2 Figure of Merit for $\text{Im}\chi^{(3)}$
3.6 Five-level Model for $\text{Im}\chi^{(3)}$
3.6.1 Rate Equations for Five-level Model
3.6.2 Rate Equations in the Transient Regime - Excited State Dynamics
3.6.3 Rate Equations in the Steady state Regime - Evaluation of $\chi^{(3)}$
3.7 Conclusion

II Thermal Lens technique

4 Photo thermal Methods for Material Characterization
4.1 Photothermal Spectroscopy
4.1.1 Introduction
4.2 Photo Thermal Detection and Applications
4.2.1 Temperature Rise
4.2.2 Pressure Change
4.2.3 Refractive Index Gradient
4.2.4 Surface Deformation
4.2.5 PT Radiometry
4.3 Thermal lens spectrometry
4.3.1 Focal Length of the Thermal Lens

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Nonlinear Absorption Measurements in Metal Phthalocyanines</td>
<td>53</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Induced Absorption in Pc's - Reverse Saturable Absorption</td>
<td>54</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Nonlinear Absorption Coefficient</td>
<td>55</td>
</tr>
<tr>
<td>2.7</td>
<td>Optical Limiting in RSA Materials</td>
<td>56</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Experimental set up</td>
<td>56</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Optical Limiting Performance of ZnPc</td>
<td>56</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Optical Limiting Curves and Open Aperture Z-scan Data</td>
<td>58</td>
</tr>
<tr>
<td>2.8</td>
<td>Conclusions</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>Excited State Absorption Spectrum Using Z-scan</td>
<td>61</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>61</td>
</tr>
<tr>
<td>3.2</td>
<td>Nonlinear Absorption</td>
<td>62</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Reverse Saturable Absorption (RSA)</td>
<td>62</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Saturable Absorption (SA)</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>Measurement of Nonlinear Absorption in the Presence of RSA and SA</td>
<td>63</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Theory</td>
<td>64</td>
</tr>
<tr>
<td>3.4</td>
<td>Cross-over from RSA to SA</td>
<td>67</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Explanations for the RSA Behavior in ZnPc</td>
<td>67</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Figure of Merit for RSA materials, σ_e/σ_g</td>
<td>69</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Calculation of Exited State Absorption Cross-section</td>
<td>70</td>
</tr>
<tr>
<td>3.5</td>
<td>Spectrum of Third Order Susceptibility</td>
<td>71</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Effective Nonlinear Absorption Coefficient</td>
<td>72</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Figure of Merit for $\text{Im}\chi^{(3)}$</td>
<td>73</td>
</tr>
<tr>
<td>3.6</td>
<td>Five-level Model for $\text{Im}\chi^{(3)}$</td>
<td>73</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Rate Equations for Five-level Model</td>
<td>74</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Rate Equations in the Transient Regime - Excited State Dynamics</td>
<td>75</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Rate Equations in the Steady state Regime - Evaluation of $\chi^{(3)}$</td>
<td>75</td>
</tr>
<tr>
<td>3.7</td>
<td>Conclusion</td>
<td>81</td>
</tr>
</tbody>
</table>

II Thermal Lens technique

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Photo thermal Methods for Material Characterization</td>
<td>87</td>
</tr>
<tr>
<td>4.1</td>
<td>Photothermal Spectroscopy</td>
<td>87</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Introduction</td>
<td>87</td>
</tr>
<tr>
<td>4.2</td>
<td>Photo Thermal Detection and Applications</td>
<td>88</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Temperature Rise</td>
<td>89</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Pressure Change</td>
<td>90</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Refractive Index Gradient</td>
<td>90</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Surface Deformation</td>
<td>92</td>
</tr>
<tr>
<td>4.2.5</td>
<td>PT Radiometry</td>
<td>93</td>
</tr>
<tr>
<td>4.3</td>
<td>Thermal lens spectrometry</td>
<td>94</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Focal Length of the Thermal Lens</td>
<td>95</td>
</tr>
</tbody>
</table>
5 Thermal Lens Technique for Calculation of Fluorescence Quantum Yield

5.1 Introduction ... 105
5.2 Evaluation of Fluorescence Quantum Yield Using Thermal Lens
 Technique ... 106
 5.2.1 Theory ... 107
 5.2.2 Experimental Set up 108
5.3 Measurements of \(Q_f \) in Hydroxy Phenyl Imino-methyl Phenol
 (HPIMP) ... 109
 5.3.1 Preparation and Chemical Characterization 109
 5.3.2 Fluorescence Studies in HPIMP 110
 5.3.3 Fluorescence Quantum Yield of HPIMP 114
 5.3.4 Energy Transfer Processes in HPIMP 116
5.4 Effect of Silver Nanosol on FQY of Rh6G 117
 5.4.1 Important Applications of Silver Nano Particles 117
 5.4.2 Preparation and Characterization of Silver sol 118
 5.4.3 Structure and Spectroscopic Properties of Rh6G 119
 5.4.4 Fluorescence Studies on Rh6G in Silver sol Environment . 119
 5.4.5 Twisted Intramolecular Charge Transfer Processes in Dye-
 sol Mixture .. 122
5.5 Enhancement in Thermal Lens Signal Intensity from Rh6G in the
 Presence of Silver sol 123
5.6 Conclusions ... 124

6 Thermal Lens Effects in Z-scan Experiments

6.1 Introduction ... 127
 6.1.1 Thermal Effects in Z-scan Experiments with High Repetition
 rate Sub pico second Lasers 128
 6.1.2 Thermal Effects in Z-scan Experiments with CW Lasers 128
 6.1.3 Thermal Effects in Z-scan Experiments Using nano second
 Lasers ... 128
 6.1.4 Methods to Uncouple Thermal Effects from Z-scan Signals 129
6.2 Thermal Lens Formalism to Interpret Z-scan Data 130
 6.2.1 Theory ... 130
 6.2.2 Experimental Results Using Metal Phthalocyanines 131
6.3 Simultaneous Determination of Thermo Optic Coefficient and
 Nonlinear Optical Parameters in Transient Regime 132
 6.3.1 Theory ... 133
 6.3.2 Experimental Results Using Metal Phthalocyanines 135
6.4 Conclusions ... 136
7 Conclusions and Future Prospects

7.1 General Conclusions .. 141
7.2 Future Prospects ... 144