5.1. INTRODUCTION

Vajda (1970) has investigated the properties of entropy of order \(\alpha \) for two probability distributions \(P \) and \(Q \) in continuous case over the same measurable space and he has established the relationship between \(H_\alpha(P;Q) \) and Bayes' risk where

\[
(5.1.1) \quad H_\alpha(P;Q) = \int p^\alpha q^{1-\alpha} \, d\mu, \quad \alpha \in (0,1),
\]

\(p, q \) being the Radon-Nikodym densities of probability distributions \(P \) and \(Q \) on measurable space \((X, \mathcal{X})\) with respect to another (dominating) probability distribution \(\mu \) on \((X, \mathcal{X})\). \(H_\alpha(P;Q) \) was simply called \(\alpha \)-entropy.

For discrete probability distributions \(P = (p_1, p_2, \ldots, p_n) \in \delta_n \) and \(Q = (q_1, q_2, \ldots, q_n) \in \delta_n \), we define \((\alpha, \beta)\)-information as

\[
(5.1.2) \quad D_n^{(\alpha, \beta)}(P;Q) = \sum_{i=1}^{n} p_i^\alpha q_i^{\beta-\alpha},
\]

where \(\alpha \neq \beta \), \(\alpha, \beta > 0 \).
In this chapter, we will give a characterization of $D_n^{(\alpha, \beta)}(P; Q)$ through certain axioms and discuss some of its special cases such as Matusita (1967) distance and Bhattacharya (1945-46) distance.

5.2. CHARACTERIZATION OF $D_n^{(\alpha, \beta)}(P; Q)$

We prove the following theorem.

Theorem: Let $K_n : S_n = \delta_n \times \delta_n \rightarrow R$ (reals) (n=2,3,...) be a sequence of functions of p_1's and q_1's satisfying the following posulates:

(i) **Symmetry**: K_3 is symmetric in pairs \{p_1, q_1\}, $i = 1, 2, 3$.

(ii) **Normalization**: $K_2(1,0; \frac{1}{2}, \frac{1}{2}) = 2^{\alpha-\beta}$

(iii) **Branching Property**:

$$K_n(p_1, p_2, \ldots, p_n; q_1, q_2, \ldots, q_n) = K_{n-1}(p_1+p_2, p_3, \ldots, p_n; q_1+q_2, q_3, \ldots, q_n) + (p_1+p_2)^\alpha (q_1+q_2)^{\beta-\alpha} (K_2(\frac{p_1}{p_1+p_2}, \frac{p_2}{p_1+p_2}; \frac{q_1}{q_1+q_2}, \frac{q_2}{q_1+q_2}) - 1),$$

for all $n > 2$, $p_1+p_2 > 0$, $q_1+q_2 > 0$.

(Postulate (iii) explains the desired nature of combinations of the measures to be taken when the union of
two mutually exclusive events are considered.)

The measure of \((\alpha, \beta)\)-information defined in (5.1.2) is uniquely determined by the above postulates.

First we prove the following lemmas:

Lemma 1. Let

\[h(r, s) = k_2(r, 1-r, s, 1-s) - 1, \text{ for } r, s \in [0, 1]. \]

Then

\[h(r, s) = h(1-r, 1-s); r, s \in I. \]

Proof: From postulate (i) for \(n = 3 \), we get

\[k_3(p_1, p_2, p_3; q_1, q_2, q_3) = k_3(p_2, p_1, p_3; q_2, q_1, q_3), \]

where \(p_1 + p_2 + p_3 = q_1 + q_2 + q_3 = 1 \).

Applying postulate (iii), (5.2.3) becomes

\[
\begin{align*}
& k_2(p_1 + p_2, p_3; q_1 + q_2, q_3) + (p_1 + p_2)^\beta (q_1 + q_2) \\
& (k_2\left(\frac{p_1}{p_1 + p_2}, \frac{p_2}{p_1 + p_2}; \frac{q_1}{q_1 + q_2}, \frac{q_2}{q_1 + q_2}\right) - 1) \\
& = k_2(p_2 + p_1, p_3; q_2 + q_1, q_3) \\
& + (p_2 + p_1)^\alpha (q_2 + q_1) \left(k_2\left(\frac{p_2}{p_2 + p_1}, \frac{p_1}{p_2 + p_1}; \frac{q_2}{q_2 + q_1}, \frac{q_1}{q_2 + q_1}\right) - 1 \right) ,
\end{align*}
\]
Substituting
\[
 r = \frac{p_1}{p_1+p_2} \quad \text{and} \quad s = \frac{q_1}{q_1+q_2}
\]
in (5.2.4), we get
\[
 K_2 (r, l-r; s, l-s) = K_2 (1-r, r; 1-s, s).
\]

i.e.
\[
 h(r,s) = h(l-r, l-s), \text{ using (5.2.1)}.
\]

This proves the lemma.

Lemma 2. \(h(r,s) \) satisfies the following functional equation

\[
 (5.2.5) \quad h(r,s) + (1-r)(1-s) \alpha \beta-\alpha \frac{u}{l-r} \frac{v}{l-s} \quad h(-\frac{u}{l-r}, -\frac{v}{l-s})
\]

\[
 = h(u,v) + (1-u)(1-v) \alpha \beta-\alpha \frac{r}{l-u} \frac{s}{l-v} \quad h(-\frac{r}{l-u}, -\frac{s}{l-v}),
\]

for \(r,s,u,v \in [0,1] \) and \(r+u \leq 1, s+v \leq 1 \).

Proof: From postulate (i) for \(n = 3 \)
\[K_3(p_1, p_2, p_3; q_1, q_2, q_3) = K_3(p_3, p_2, p_1; q_3, q_2, q_1). \]

Now using branching property for \(n = 3 \), we get

\begin{align*}
(5.2.6) \quad & K_2(p_1+p_2, p_3; q_1+q_2, q_3) + (p_1+p_2) \alpha (q_1+q_2)^{\beta-\alpha} \\
& = K_2(p_3+p_2, p_1; q_3+q_2, q_1) + (p_3+p_2) \alpha (q_3+q_2)^{\beta-\alpha} \\
& \quad (K_2(\frac{p_1}{p_1+p_2}, \frac{p_2}{p_1+p_2}; \frac{q_1}{q_1+q_2}, \frac{q_2}{q_1+q_2}) - 1)
\end{align*}

or

\begin{align*}
(5.2.7) \quad & K_2(1-p_3, p_3; 1-q_3, q_3) + (1-p_3) \alpha (1-q_3)^{\beta-\alpha} \\
& = K_2(1-p_1, p_1; 1-q_1, q_1) + (1-p_1) \alpha (1-q_1)^{\beta-\alpha} \\
& \quad (K_2(\frac{p_1}{1-p_3}, \frac{p_2}{1-p_3}; \frac{q_1}{1-q_3}, \frac{q_2}{1-q_3}) - 1).
\end{align*}

as \(\sum_{i=1}^{3} p_i = \sum_{i=1}^{3} q_i = 1 \).

Now by putting \(p_3 = r, q_3 = s, p_1 = u \) and \(q_1 = v \) in (5.2.7), we get
Using (5.2.1), we have

\[K_2(l-r; 1-s, 1-s) + (1-r)(1-s)^{\beta-\alpha} \]
\[= K_2(\frac{l-r}{1-r}, \frac{1-u}{1-u}; \frac{1-\nu}{1-\nu}, \frac{1-\nu}{1-\nu}) \]
\[+ (1-u)^{\beta-\alpha}(1-\nu)^{\beta-\alpha} K_2(\frac{r-u}{1-u}; \frac{r-s}{1-s}; \frac{s}{1-\nu}, \frac{s}{1-\nu}) \]

Further using (5.2.2) we get (5.2.5).

This proves the Lemma 2.

Lemma 3. \(h(r,s) \) satisfying the functional equation (5.2.5), is uniquely determined as

\[(5.2.8) \quad h(r,s) = C \left(r s + (1-r)(1-s)^{\beta-\alpha} \right) \]

for \(r, s \in I \),

where \(C \) is a constant to be determined by normalizing condition (ii).

Proof: Putting
\[u = x_1, \quad \frac{v}{1-r} = x_2, \quad l-r = y_1 \text{ and } l-s = y_2 \text{ in } \]

(5.2.5), we get

\[\alpha \beta - \alpha \]
\[h \left(1-x_1, 1-y_2 \right) + y_1 y_2 \quad h(x_1, x_2) = h(x_1 y_1, x_2 y_2) \]
\[+ \left(\frac{1-x_1}{1-x_2} \right) \left(\frac{1-y_1}{1-y_2} \right) \quad h \left(\frac{1-x_1 y_1}{1-x_2 y_2} \right), \]

for \(y_1 \in (0,1] \), \(x_1 \in [0,1] \), \(x_1 y_1 \neq 1(i=1, 2) \).

Using (5.2.2) in (5.2.9), we get

\[\alpha \beta - \alpha \]
\[h(y_1, y_2) + y_1 y_2 \quad h(x_1, x_2) = h(x_1 y_1, x_2 y_2) \]
\[+ \left(\frac{1-x_1}{1-x_2} \right) \left(\frac{1-y_1}{1-y_2} \right) \quad h \left(\frac{1-x_1 y_1}{1-x_2 y_2} \right). \]

Now consider the function

\[\alpha \beta - \alpha \]
\[g(x_1, x_2, y_1, y_2) = h(y_1, y_2) + y_1 y_2 \]
\[+ \left(\frac{1-y_1}{1-y_2} \right) \quad h(x_1, x_2) \]

for \(x_1, x_2, y_1, y_2 \in (0,1) \).

We will show that \(g(x_1, x_2, y_1, y_2) \) is symmetric in pairs \((x_1, y_1)\) and \((x_2, y_2)\). Interchanging the \(y \)'s and \(x \)'s in
(5.2.10), we get

\[(5.2.12) \quad h(x_1, x_2) + x_1 x_2 h(y_1 y_2) = h(x_1 y_1, x_2 y_2)\]

\[\alpha \beta - \alpha + (1-x_1 y_1) (1-x_2 y_2) h(y_1 y_2) = h(x_1 y_1, x_2 y_2).\]

Now subtract the respective sides of (5.2.12) from (5.2.10), to obtain

\[h(y_1, y_2) + y_1 y_2 h(x_1, x_2) - h(x_1, x_2) + x_1 x_2 - \alpha h(y_1, y_2)\]

\[= (1-x_1 y_1) (1-x_2 y_2) h(y_1 y_2) = h(x_1 y_1, x_2 y_2) - h(y_1, y_2)\]

That is

\[(5.2.13) \quad h(y_1, y_2) + y_1 y_2 h(x_1, x_2) = h(x_1, x_2)\]

\[\alpha \beta - \alpha + x_1 x_2 h(y_1, y_2) + (1-x_1 y_1) (1-x_2 y_2)\]

\[= h(y_1, y_2) - h(x_1 y_1, x_2 y_2) = h(x_1 y_1, x_2 y_2) - h(y_1, y_2)\]

Setting \[y_i = \frac{1-y_i}{1-x_i y_i}\] for \(i=1, 2\) in (5.2.10), we get
\[(5.2.14) \quad h\left(\frac{1-y_1}{1-x_1y_1}, \frac{1-y_2}{1-x_2y_2}\right) + h\left(\frac{1-y_1}{1-x_1y_1}, \frac{1-y_2}{1-x_2y_2}\right) = h\left(\frac{1-x_1y_1}{1-x_2y_2}, \frac{1-x_2y_2}{1-x_1y_1}\right) \]

\[(5.2.15) \quad (1-x_1y_1)(1-x_2y_2) \left[h\left(\frac{1-y_1}{1-x_1y_1}, \frac{1-y_2}{1-x_2y_2}\right) \right] = h\left(\frac{1-x_1y_1}{1-x_2y_2}, \frac{1-x_2y_2}{1-x_1y_1}\right) \]

Using (5.2.2) in (5.2.14), we get

\[h\left(\frac{1-y_1}{1-x_1y_1}, \frac{1-y_2}{1-x_2y_2}\right) = h\left(\frac{1-x_1y_1}{1-x_2y_2}, \frac{1-x_2y_2}{1-x_1y_1}\right) \]

or

\[h\left(\frac{1-y_1}{1-x_1y_1}, \frac{1-y_2}{1-x_2y_2}\right) - h\left(\frac{1-x_1y_1}{1-x_2y_2}, \frac{1-x_2y_2}{1-x_1y_1}\right) \]

or

\[h\left(\frac{1-y_1}{1-x_1y_1}, \frac{1-y_2}{1-x_2y_2}\right) = h\left(\frac{1-x_1y_1}{1-x_2y_2}, \frac{1-x_2y_2}{1-x_1y_1}\right) \]

or

\[(5.2.15) \quad (1-x_1y_1)(1-x_2y_2) \left[h\left(\frac{1-y_1}{1-x_1y_1}, \frac{1-y_2}{1-x_2y_2}\right) \right] = h\left(\frac{1-x_1y_1}{1-x_2y_2}, \frac{1-x_2y_2}{1-x_1y_1}\right) \]
Thus equation (5.2.13) and (5.2.15) give

\[
\begin{align*}
&= (1-x_1)^\alpha (1-x_2)^\beta h(y_1, y_2) - (1-y_1)^\alpha (1-y_2)^\beta h(x_1, x_2). \\
&= (1-x_1)^\alpha (1-x_2)^\beta h(y_1, y_2) - (1-y_1)^\alpha (1-y_2)^\beta h(x_1, x_2), \\
i.e.\ &\frac{\alpha y_1^\alpha y_2^\beta - h(x_1, x_2) + (1-y_1)^\alpha (1-y_2)^\beta h(x_1, x_2)}{(1-x_1)^\alpha x_1^\alpha x_2^\beta + (1-y_1)^\alpha (1-y_2)^\beta h(x_1, x_2),} \\
i.e.\ &h(x_1, x_2)(y_1^\alpha y_2^\beta + (1-y_1)^\alpha (1-y_2)^\beta - 1) \\
&= h(y_1, y_2) (x_1^\alpha x_2^\beta + (1-x_1)^\alpha (1-x_2)^\beta - 1), \\
i.e.\ &h(y_1, y_2) = \frac{\alpha y_1^\alpha y_2^\beta + (1-y_1)^\alpha (1-y_2)^\beta - 1}{(1-x_1)^\alpha x_1^\alpha x_2^\beta + (1-y_1)^\alpha (1-y_2)^\beta h(x_1, x_2)} = \text{C (say)} \\
i.e.\ &(5.2.16) h(y_1, y_2) = \text{C(} y_1^\alpha y_2^\beta + (1-y_1)^\alpha (1-y_2)^\beta - 1) ,
\end{align*}
\]

where C is constant depending on the parameters \(\alpha\) and \(\beta\).
Now on using the normalizing condition given in postulate (ii), \(C \) must be equal to 1 and (5.2.16) reduces to

\[
(5.2.17) \quad h(y_1, y_2) = y_1^\alpha y_2^{\beta-\alpha} + (1-y_1)^\alpha (1-y_2)^{\beta-\alpha} - 1,
\]

for \(y_1, y_2 \in (0,1) \),

i.e.

\[
(5.2.18) \quad K_2(y_1, 1-y_1; y_2, 1-y_2) = y_1^\alpha y_2^{\beta-\alpha} + (1-y_1)^\alpha (1-y_2)^{\beta-\alpha}.
\]

We observe that \(K_2(y_1, 1-y_1; y_2, 1-y_2) = 1 \), whenever \(y_1 = y_2 \) which implies that the measure of \((\alpha, \beta)\)-information is maximum when the probability distributions \(P \) and \(Q \) coincide.

Further we have to show that (5.2.17) can be extended to \(y_1, y_2 \in [0,1] \). In (5.2.5) setting \(r = 0 \) and \(v = 0 \), we get

\[
\beta-\alpha\quad h(o,s)+(1-s)h(u,o) = h(u,o)+(1-u)h(o,s),
\]

i.e.

\[
(5.2.19) \quad ((1-u)^\alpha - 1)h(o,s) = ((1-s)^{\beta-\alpha} - 1)h(u,o).
\]

Since \(u \)'s are arbitrary in \([0,1]\), (5.2.19) gives

\[
(5.2.20) \quad h(o,s) = C_1((1-s)^{\beta-\alpha} - 1),
\]
where \(C_1 = \frac{h(u, o)}{(1-u)^\alpha - 1} \) is constant not involving \(s \).

But \(h(o, s) = h(1, 1-s) \), (according to 5.2.2). Therefore replacing \(s \) by \((1-s) \) in (5.2.20), we get

\[
(5.2.21) \quad h(1, s) = C_1(s^{\beta - \alpha} - 1), \text{ for } s \in (0, 1].
\]

Also, it is evident from (5.2.20) and (5.2.21) that \(s \) may be taken as \(o \) in (5.2.20) and as unity in (5.2.20). Now \(s + \nu \leq 1 \) (as in 5.2.5). Take \(s + \nu = 1 \) and since \(s \in (0, 1] \) and \(\nu = 1 \), we have \(s = o \) and (5.2.21) reduces to

\[
(5.2.22) \quad h(1, o) = C_1(-1).
\]

Similar result is easily obtained for unity and zero in \(h(\) \). Hence, in general using (5.2.2), (5.2.1), and normalizing condition given in postulate (ii), we have

\[
(5.2.23) \quad h(x_1, x_2) = x_1^\alpha x_2^{\beta - \alpha} + (1-x_1)^\alpha (1-x_2)^{\beta - \alpha} - 1,
\]

for \(x_1, x_2 \in I \).

Thus we have

\[
(5.2.24) \quad k_2(x_1, 1-x_1; x_2, 1-x_2) = x_1x_2^{\beta - \alpha} + (1-x_1)^\alpha (1-x_2)^{\beta - \alpha},
\]

for \(x_1, x_2 \in I \).
This proves the Lemma 3.

Proof of the Theorem. By repeated application of the postulate (iii), we get

\[(5.2.25) \quad K_n(p_1, p_2, \ldots, p_n; q_1, q_2, \ldots, q_n) - 1 = \sum_{i=2}^{n} p_i^{\alpha} Q_i^{\beta-\alpha} \left(K_2 \left(\frac{p_i}{p_1}, \frac{1 - p_i}{p_1}; \frac{q_i}{Q_i}, 1 - \frac{q_i}{Q_i} \right) - 1 \right), \]

where

\[
P_i = p_1 + p_2 + \ldots + p_i \]
\[
Q_i = q_1 + q_2 + \ldots + q_i \quad ; \quad i = 1, 2, \ldots, n.
\]

Since \(K_2(y_1, 1-y_1; y_2, 1-y_2) = y_1^{\alpha} y_2^{\beta-\alpha} (1-y_1)^{\alpha} (1-y_2)^{\beta-\alpha} \),

we get

\[
K_n(p_1, p_2, \ldots, p_n; q_1, q_2, \ldots, q_n) - 1 = \sum_{i=2}^{n} p_i^{\alpha} q_i^{\beta-\alpha} \left(\frac{p_i}{p_1} \frac{1 - p_i}{p_1} \left(\frac{q_i}{Q_i} \frac{1 - q_i}{Q_i} \right) - 1 \right)
\]

\[
= \sum_{i=2}^{n} p_i^{\alpha} q_i^{\beta-\alpha} + \sum_{i=2}^{n} p_i^{\alpha} q_i^{\beta-\alpha} - \sum_{i=2}^{n} p_i^{\alpha} q_i^{\beta-\alpha}
\]

\[
= n \sum_{i=2}^{n} p_i^{\alpha} q_i^{\beta-\alpha} - \sum_{i=2}^{n} p_i^{\alpha} q_i^{\beta-\alpha} = \sum_{i=1}^{n} p_i^{\alpha} q_i^{\beta-\alpha} - 1 \quad (\text{since } p_n = Q_n = 1)
\]
i.e. \[K_n(p_1, p_2, \ldots, p_n; q_1, q_2, \ldots, q_n) = \sum_{i=1}^{n} p_i^{\alpha} q_i^{\beta - \alpha}. \]

This completes the proof of the theorem.

Particular cases of \(D_n^{(\alpha, \beta)}(P; Q) \)

(a_1) If we take \(\alpha = \frac{1}{2}, \beta = 1 \) then \(D_n^{(\alpha, \beta)}(P; Q) \) reduces to

\[(5.2.26) \quad D_n^{(1/2, 1)}(P; Q) = \sum_{i=1}^{n} p_i^{1/2} q_i^{1/2}, \]

which is a measure of affinity between the distributions \(P \) and \(Q \) and the Matusita (1967) distance \(M_n(P; Q) \) takes the form

\[(5.2.27) \quad M_n(P; Q) = 2(1 - D_n^{(1/2, 1)}(P; Q)). \]

(a_2) The quantity \(-\log_2(D_n^{(1/2, 1)}(P; Q)) \) is a measure of distance proposed by Bhattacharya (1945-46).

5.3. INFORMATION THEORETIC MEASURE

In this section, we consider the generalized functional equation in three variables defined as

\[(5.3.1) \quad \sum_{i=1}^{m} \sum_{j=1}^{n} F(x_i y_j, u_i v_j, s_i t_j) = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i u_i s_i F(y_j, v_j, t_j) \]

\[+ \sum_{i=1}^{m} \sum_{j=1}^{n} y_i v_i t_j F(x_i, u_i, s_i), \]
for $x_i, y_j, u_i, v_j, s_i, t_j, \alpha, \Sigma x_i = \sum_{i=1}^{n} y_j = 1, \Sigma u_i \leq 1, \Sigma v_j \leq 1, \Sigma s_i \leq 1, \text{ and } \Sigma t_j \leq 1$, where all the $x, y, u, v, s, t > 0$.

If F is the continuous function satisfying functional equation (5.3.1) under some suitable conditions, then we define information measure associated with discrete probability distributions P, Q and R as

$$I(P;Q;R) = \sum_{i=1}^{n} F(p_i, q_i, r_i).$$

Theorem 1. The only continuous solution of the functional equation (5.3.1) is

$$F(p, q, r) = \mu(\beta - \alpha \quad \alpha - \beta \quad \lambda - \delta \quad \delta - \lambda),$$

where μ is a constant depending on the parameters α, β, δ and λ such that $\alpha \neq \beta$ and $\delta \neq \lambda$.

Proof: Let m, n, a, b, c and d be the positive integers such that $1 \leq m \leq a, c$ and $1 \leq n \leq b, d$. Now setting

$$x_i = \frac{1}{m}, \quad u_i = \frac{1}{a}, \quad s_i = \frac{1}{c} \quad (i=1, \ldots, m)$$

$$y_j = \frac{1}{n}, \quad v_j = \frac{1}{b}, \quad t_j = \frac{1}{d} \quad (j=1, 2, \ldots, n)$$
in equation (5.3.1), we obtain

\[
\begin{align*}
\text{mn} \ F\left(\frac{1}{m}, \frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right) &= \text{mn} \ F\left(\frac{1}{n}, \frac{1}{b}, \frac{1}{d}\right)(\frac{1}{a})^{\beta-\alpha} (\frac{1}{c})^{\alpha-\beta} \\
+ \text{mn} \ F\left(\frac{1}{m}, \frac{1}{a}, \frac{1}{b}\right)(\frac{1}{n})(\frac{1}{b})^{\lambda-\delta} (\frac{1}{d})^{\delta-\lambda} ,
\end{align*}
\]

i.e.

\[
(5.3.4) \quad (\frac{1}{m})(\frac{1}{a})(\frac{1}{b})(\frac{1}{c})^{\lambda-\delta} F\left(\frac{1}{m}, \frac{1}{a}, \frac{1}{c}\right).
\]

By putting

\[
\frac{1}{m} = p, \frac{1}{n} = f, \frac{1}{a} = q, \frac{1}{b} = r, \frac{1}{c} = g, \frac{1}{d} = h \quad \text{in} \quad (5.3.4)
\]

we get

\[
F(pf, qg, rh) = p^{\beta-\alpha} q^{\alpha-\gamma} r^{\lambda-\delta} h^{\delta-\lambda} F(pf, qg, rh) + f g^{\lambda-\delta} h^{\delta-\lambda} F(pq, rh).
\]

Since (due to symmetry property), we have

\[
F(pf, qg, rh) = F(fp, qg, hr),
\]

\[
\begin{align*}
\text{or} \quad f g h^{\lambda-\delta} + p q r^{\lambda-\delta} h^{\delta-\lambda} F(p, q, r) \\
&= f g h^{\lambda-\delta} + p q r^{\lambda-\delta} h^{\delta-\lambda} F(p, q, r) + p q r^{\lambda-\delta} h^{\delta-\lambda} F(p, q, r) + p q r^{\lambda-\delta} h^{\delta-\lambda} F(p, q, r)
\end{align*}
\]
or
\[
\frac{F(p,q,r)}{p(q - r - q r)} = \frac{F(f,g,h)}{f(g - h - g h)} = \mu \text{ (say)}
\]
i.e.
\[
(5.3.5) \quad F(p,q,r) = \mu(p(q - r - q r)).
\]

The solution (5.3.5) can also be extended to the case when \(p, q \) and \(r \) are rational numbers. For this, let
\[
x = \frac{m}{n} (m < n), \quad y = \frac{p}{q} (p < q), \quad u = \frac{p^*}{q} (p^* < q^*).
\]
Choose integers \(K \) and \(K^* \) sufficiently large such that
\[
m < KP, \quad K^* p^*, \quad n < Kq, \quad K^* q^*; \quad \frac{q(n-m)}{n(q-p)} \leq K
\]
and \(\frac{q^*(n-m)}{n(q^*-p^*)} \leq K^* \).

Set
\[
x_1 = \frac{m}{n}, \quad x_2 = x_3 = \ldots = x_{n-m+1} = \frac{1}{n}
\]
\[
y_1 = y_2 = \ldots = y_m = \frac{1}{m}
\]
\[
u_1 = \frac{p}{q}, \quad u_2 = u_3 = \ldots = u_{n-m+1} = \frac{1}{nk}
\]
\[
v_1 = v_2 = \ldots = v_m = \frac{1}{pk}
\]
\[
s_1 = \frac{p^*}{q}, \quad s_2 = s_3 = \ldots = s_{n-m+1} = \frac{1}{nk^*}
\]
\[
t_1 = t_2 = \ldots = t_m = \frac{1}{p^*k^*}
\]
(5.3.6)

Taking \(m \) as \(n-m+1 \) and \(n \) as \(m \) in equation (5.3.1), we get
Now (5.3.7) alongwith (5.3.3) gives

\[F\left(\frac{m}{n}, \frac{p}{q}, \frac{p^*}{q^*}\right) = \mu\left(\left(\frac{m}{n}\right)(\frac{p}{q})^{\beta-\alpha} \left(\frac{p^*}{q^*}\right)^{\alpha-\beta} \right) \]

i.e.

(5.3.8) \[F(x, u, s) = \mu(x \{u \leq s - u \leq s\}), \]

for all rationals \(x, u, s \in [0, 1] \).

From the continuity of \(F \) it follows that (5.3.8) is valid for all real numbers \(x, u, s \in [0, 1] \).

Theorem 2. Corresponding to the continuous solution (5.3.5), the information theoretic measure associated with the distribution \(P, Q \) and \(R \) is

(5.3.9) \[I_{n}^{\alpha, \delta}(P; Q; R) = (2^{-2}) \sum_{i=1}^{n} q_i^{\beta-\alpha} r_i^{\alpha-\beta} \]

\[- \sum_{i=1}^{n} p_i q_i^{\lambda-\delta} r_i^{\delta-\lambda}. \]
Remark: If the original and final predictions are the same then the information improvement is zero. In mathematical terms it means

\[I_n(P;Q|R) = \sum_{i=1}^{n} F(p_i, q_i, r_i) = 0, \]

whenever \(q_i = r_i \) for all \(i \). Therefore from (5.3.9),

\[I_{\alpha, \delta}^{(\beta, \lambda)} (P;Q;R) = 0. \]

The quantity (5.3.9) may be called type \((\alpha, \beta, \delta, \lambda)\)-information improvement.

We add an additional condition which in a way determines the unit of the measure, i.e.

\[(5.3.10) \quad I(1, \frac{1}{2}, 1) = F(1, \frac{1}{2}, 1) = 1. \]

Proof of the theorem 2: Equation (5.3.5) for \(F(1, \frac{1}{2}, 1) = 1 \) yields

\[(5.3.11) \quad \mu = \frac{1}{2^{\alpha-\beta - \delta - \lambda}}. \]

Therefore (5.3.9) follows from (5.3.2), (5.3.5) and (5.3.11).