CONTENTS

INTRODUCTION 1

OBJECTIVES OF THE PRESENT STUDY 6

LITERATURE REVIEW 8

Hypoglycaemia and brain 11
Dopamine, a neurotransmitter in the central nervous system 13
Biosynthesis of dopamine 14
Dopamine reuptake and metabolism 15
Dopamine receptors 16
Dopamine D1-like family 17
Dopamine D1 receptor 18
Dopamine D5 receptors 19
Dopamine D2-like family 20
Dopamine D2 receptors 20
Dopamine D3 receptors 22
Dopamine D4 receptors 23
Glutamate Receptors 23
NMDA receptors 25
Brain neurotransmitters and diabetes 29
Dopamine and its receptor alterations during diabetes 31
Brain neurotransmitters and hypoglycaemia 33
Effect of glucose on brain dopamine and its receptors 38
Effect of dopamine on blood glucose levels 39
Glutamate receptors in diabetes and hypoglycaemia 40
MDH and GDH in diabetes and hypoglycaemia 42
Glucose uptake by pancreatic cells 43
Factors affecting insulin regulation from pancreatic β-cells 45
Role of Neurotransmitters in Insulin Regulation 46
Epinephrine and Norepinephrine 46
Acetylcholine 47
γ-Aminobutyric acid 48
Serotonin 49
Dopamine in pancreatic glucose uptake and insulin secretion 49
Glutamate in pancreatic glucose uptake and insulin secretion 53
Electrophysiological changes during diabetes and hypoglycaemia 54

MATERIALS AND METHODS

Chemicals used and their sources 58
Biochemicals 58
Radiochemicals 58
Molecular Biology Chemicals 59
Animals 59
Induction of diabetes and hypoglycaemia 59
Estimation of blood glucose 60
Tissue preparation 61
Quantification of brain monoamines & their metabolites 61
Dopamine receptor binding studies using [3H]radioligands in the brain regions of control & experimental rats 62
Dopamine DA receptor binding studies using [3H]Dopamine 62
Dopamine D₁ receptor binding studies using [³H]SCH 23390
Dopamine D₂ receptor binding studies using [³H]YM-09151-2
Protein Determination
Analysis of the receptor binding data
Linear regression analysis for Scatchard plots
Nonlinear regression analysis for displacement curve
Gene expression studies of dopamine D₁ and D₂ receptor in different brain regions of control and experimental rats
Preparation of RNA
Isolation of RNA
cDNA Synthesis
Real-Time PCR Assay
Glutamate dehydrogenase assay
Malate dehydrogenase assay
EEG analysis
In vitro glucose uptake and insulin secretion studies in pancreatic islets
Isolation of Pancreatic islets
[^14 C]Glucose uptake studies by pancreatic islets in vitro
In vitro insulin secretion study in the pancreatic islets
In vitro insulin secretion in the presence of different concentrations of dopamine, glutamate, their antagonists
Radioimmunoassay of Insulin

STATISTICS

RESULTS

Body weight and blood glucose level of experimental rats
Dopamine and homovanillic acid contents in different brain regions of control and experimental rats

Hippocampus
Brainstem
Cerebral cortex
Corpus striatum

Brain dopamine receptor changes in control and experimental rats

Hippocampus
Scatchard analysis using $[^3]H$ Dopamine against dopamine
Displacement analysis of $[^3]H$ Dopamine against dopamine
Real-Time PCR analysis of DA D$_1$ receptors
Real-Time PCR analysis of DA D$_2$ receptors

Brainstem
Scatchard analysis using $[^3]H$ Dopamine against dopamine
Displacement analysis of $[^3]H$ Dopamine against dopamine
Scatchard analysis using $[^3]H$ SCH 23390 against SCH 23390
Displacement analysis of $[^3]H$ SCH 23390 against SCH 23390
Real-Time PCR analysis of DA D$_1$ receptors
Real-Time PCR analysis of DA D$_2$ receptors

Cerebral Cortex
Scatchard analysis using $[^3]H$ Dopamine against dopamine
Displacement analysis of [3H] Dopamine against dopamine 82
Scatchard analysis using [3H] SCH 23390 against SCH 23390 82
Displacement analysis of [3H] SCH 23390 against SCH 23390 82
Real-Time PCR analysis of DA D₁ receptors 83
Scatchard analysis using [3H] YM-09151-2 against sulpiride 83
Displacement analysis of [3H] YM-09151-2 against sulpiride 83
Real-Time PCR analysis of DA D₂ receptors 83

Corpus Striatum

Scatchard analysis using [3H] Dopamine against dopamine 84
Displacement analysis of [3H] Dopamine against Dopamine 84
Scatchard analysis using [3H] SCH 23390 against SCH 23390 84
Displacement analysis of [3H] SCH 23390 against SCH 23390 85
Real-Time PCR analysis of DA D₁ receptors 85
Scatchard analysis using [3H] YM-09151-2 against sulpiride 85
Displacement analysis of [3H] YM-09151-2 against sulpiride 86
Real-Time PCR analysis of DA D₂ receptors 86

Glutamate dehydrogenase activity in the brainstem, cerebral cortex of control and experimental rats 86
Malate dehydrogenase activity in the brainstem, cerebral cortex of control and experimental rats 87
Gene expression studies of glutamate receptor, NMDAR1, in different brain regions of control and experimental rats

Hippocampus 88
Brainstem 88
Cerebral cortex 89
Corpus striatum 89

EEG analysis of brain activity in the frontal region of control and experimental rats 89

In vitro glucose uptake and insulin secretion studies in pancreatic islets

<table>
<thead>
<tr>
<th>Study</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose uptake studies in pancreatic islets</td>
<td>90</td>
</tr>
<tr>
<td>Effect of dopamine on glucose uptake in vitro</td>
<td>90</td>
</tr>
<tr>
<td>Effect of dopamine antagonists on glucose uptake in vitro</td>
<td>91</td>
</tr>
<tr>
<td>Effect of glutamate and its antagonist on glucose uptake in vitro</td>
<td>92</td>
</tr>
<tr>
<td>Insulin secretion studies in pancreatic islets</td>
<td>96</td>
</tr>
<tr>
<td>Effect of dopamine on glucose induced insulin secretion in vitro</td>
<td>92</td>
</tr>
<tr>
<td>Effect of dopamine antagonists on glucose induced insulin secretion in vitro</td>
<td>93</td>
</tr>
<tr>
<td>Effect of glutamate and its antagonist on glucose induced insulin secretion in vitro</td>
<td>94</td>
</tr>
</tbody>
</table>

DISCUSSION 96
SUMMARY 124
CONCLUSION 128
REFERENCES
LIST OF PUBLICATIONS, AWARDS, ABSTRACTS PRESENTED
TABLES & FIGURES