Results

DRUG EFFECTS ON EPILEPTIC RATS

I. **Seizure frequency after Carbamazepine, *Bacopa monnieri* and Bacoside A, in post-treated epileptic rats.**

Seizure frequency per 4 hours over 72 hours video recording period showed a significant increase in epileptic group. Treatment with Carbamazepine, *Bacopa monnieri* and Bacoside A significantly ($p<0.01$) reduced the seizure frequency when compared to epileptic group (Table-1; Figure- 1-4).

II. **Magnitude of Drug Effect**

Mean difference of seizure frequency showed a significant decrease ($p<0.01$) in the Carbamazepine, *Bacopa monnieri* and Bacoside A, post-treatment when compared to epileptic group (Figure- 5).

III. **Seizure onset latency after Carbamazepine, *Bacopa monnieri* and Bacoside A, pre-treatment.**

Seizure onset latency showed a significant decrease ($p<0.01$) in the epileptic group when compared to Carbamazepine, *Bacopa monnieri* and Bacoside A, pre-treated groups (Table- 2, Figure- 6).
IV. Duration of *Status epilepticus* after Carbamazepine, *Bacopa monnieri* and Bacoside A, pre-treatment.

Duration of *Status epilepticus* significantly increased (p<0.01) in epileptic group when compared to Carbamazepine, *Bacopa monnieri* and Bacoside A, pre-treated groups (Table-3, Figure-7).

V. Effect of different dosage of Carbamazepine, *Bacopa monnieri* and Bacoside A, in post-treated epileptic rats

Carbamazepine and Bacoside A treatment in 150 and 300 mg/kg/day showed a significant decrease (p<0.01) in the seizure frequency when compared to epileptic group (Table-4a, Figure-8). *Bacopa monnieri* treatment in 300 and 500 mg/kg/day showed a significant decrease (p<0.01) in the seizure frequency when compared to epileptic group (Table-4b, Figure-8).

ACETYLCHOLINE ESTERASE ACTIVITY IN THE BRAIN REGIONS OF EXPERIMENTAL RATS

Hippocampus

Acetylcholine esterase kinetic studies showed that V_{max} significantly increased (p<0.001) in the hippocampus of epileptic group with no significant difference in the K_{m} when compared to control. Carbamazepine and extract of *Bacopa monnieri* treatment significantly reversed the V_{max} (p<0.001) to near control when compared to epileptic group (Table-5, Figure-9). Bacoside A treatment significantly reversed the V_{max} (p<0.001) to near control when compared to epileptic group (Table-6, Figure-10). K_{m} showed no significant change in all the treated groups.
Brainstem

V_{max} of acetylcholine esterase significantly increased ($p<0.01$) in the brainstem of epileptic rats with no significant change in K_m when compared to control. Carbamazepine and *Bacopa monnieri* treatment significantly reversed the V_{max} ($p<0.01$) to near control when compared to epileptic group (Table-7, Figure-11). Bacoside A treatment significantly reversed the V_{max} ($p<0.01$) to near control when compared to epileptic group (Table-8, Figure-12).

GLUTAMATE DEHYDROGENASE ACTIVITY IN THE BRAIN REGIONS OF EXPERIMENTAL RATS

Hippocampus

Glutamate dehydrogenase kinetics studies showed that V_{max} significantly increased ($p<0.01$) in the hippocampus of epileptic group with no significant change in K_m. Extract of *Bacopa monnieri* treatment significantly reversed the V_{max} ($p<0.01$) to near control when compared to epileptic group (Table-9, Figure-13).

Cerebellum

Glutamate dehydrogenase kinetics studies showed that V_{max} significantly increased ($p<0.01$) in the cerebellum of epileptic group with no significant change in K_m. Extract of *Bacopa monnieri* treatment significantly reversed the V_{max} ($p<0.01$) to near control when compared to epileptic group (Table-10, Figure-14).

Brainstem

Glutamate dehydrogenase kinetics studies showed that V_{max} significantly increased ($p<0.001$) in the brainstem of epileptic group with no significant change in K_m. Extract of *Bacopa monnieri* treatment significantly reversed the V_{max} ($p<0.01$) to near control when compared to epileptic group (Table-7, Figure-11). Bacoside A treatment significantly reversed the V_{max} ($p<0.01$) to near control when compared to epileptic group (Table-8, Figure-12).
K\textsubscript{m}. Extract of *Bacopa monnieri* treatment significantly reversed the V\textsubscript{max} (p<0.001) to near control when compared to epileptic group (Table- 11, Figure- 15).

CENTRAL MUSCARINIC RECEPTOR ALTERATIONS IN THE BRAIN REGIONS OF EXPERIMENTAL RATS

Hippocampus

I) Total Muscarinic receptor analysis in post-treated epileptic rats

a) *Scatchard analysis of \[^{3}H\] QNB binding against atropine in the hippocampus of Control, Epileptic, Epileptic+Carbamazepine, Epileptic+Bacopa monnieri and Epileptic+Bacoside A, post-treated group rats*

The total muscarinic receptor status was assayed using the specific ligand, \[^{3}H\]QNB and muscarinic general antagonist, atropine. Scatchard analysis showed that the B\textsubscript{max} increased significantly (p<0.001) in epileptic rats with a significant increase (p<0.01) in the K\textsubscript{d} when compared to control. In Carbamazepine treated epileptic rats, B\textsubscript{max} significantly (p<0.001) reversed to near control when compared to epileptic group. K\textsubscript{d} also significantly (p<0.05) reversed to near control when compared to epileptic group. Extract of *Bacopa monnieri* treatment significantly reversed the B\textsubscript{max} (p<0.001) and K\textsubscript{d} (p<0.01) to near control when compared to epileptic group (Table-12 & Figure- 16). Bacoside A treatment significantly reversed the B\textsubscript{max} (p<0.001) and K\textsubscript{d} (p<0.01) to near control when compared to epileptic group (Table- 14 & Figure- 18).
b) **Displacement analysis of \(^3H \) QNB against atropine**

The competition curve for atropine against \(^3H \) QNB fitted for one site model in all groups. The \(\log (EC_{50}) \) and \(K_i \) increased in epileptic condition and reversed to near control in Carbamazepine and Bacoside A treated epileptic rats (Table- 13,15 & Figure- 17,19).

II) **Muscarinic M1 receptor analysis in post-treated epileptic rats**

a) **Scatchard analysis of \(^3H \) QNB binding against pirenzepine in the Hippocampus of Control, Epileptic, Epileptic+Carbamazepine, Epileptic+Bacopa monnieri and Epileptic+Bacoside A post- treated Epileptic rats**

Binding analysis of muscarinic M1 receptors was done using \(^3H \)QNB and M1 subtype specific antagonist pirenzepine. The \(B_{\text{max}} \) increased significantly (p<0.001) in epileptic group when compared to control group. The \(K_d \) also increased significantly when compared to control group (p<0.001). In Carbamazepine treated epileptic rats \(B_{\text{max}} \) significantly (p<0.001) reversed back to near control when compared to epileptic group. \(K_d \) also significantly (p<0.001) reversed back to near control when compared to epileptic group. Extract of *Bacopa monnieri* treatment significantly reversed the \(B_{\text{max}} \) (p<0.001) and \(K_d \) (p<0.01) to near control when compared to epileptic group. (Table- 16 & Figure- 20). Bacoside A treatment significantly reversed the \(B_{\text{max}} \) (p<0.001) and \(K_d \) (p<0.001) to near control when compared to epileptic group (Table- 18 & Figure- 22).
b) *Displacement analysis of* $[^3H]$ QNB *using pirenzepine*

The competition curve for pirenzepine against $[^3H]$QNB fitted for one site model in all groups. The log (EC$_{50}$) increased in epileptic group and reduced during Carbamazepine and *Bacopa monnieri* treatment. The K_i increased in epileptic condition and reversed to near control in Bacoside A treated epileptic rats (Table- 17, 19 & Figure- 21, 23).

III) *Real Time-PCR analysis of Muscarinic M1 receptor mRNA in post-treated epileptic rats*

Real Time-PCR analysis showed that the muscarinic M1 receptor mRNA increased significantly ($p<0.001$) in epileptic condition. It was reversed to near control in Carbamazepine ($p<0.001$), *Bacopa monnieri* ($p<0.01$) and Bacoside A ($p<0.01$) treated epileptic rats (Table-20, 21 & Figure- 24, 25).

IV) *Muscarinic M1 receptor analysis in pre-treated epileptic rats*

a) *Scatchard analysis of* $[^3H]$ QNB *binding against pirenzepine in the Hippocampus of Control, Epileptic, Epileptic+Carbamazepine, Epileptic+Bacopa monnieri and Epileptic+Bacopside A pre-treated Epileptic rats*

Binding analysis of Muscarinic M1 receptors was done using $[^3H]$QNB and M1 subtype specific antagonist pirenzepine. B_{max} decreased significantly ($p<0.001$) in epileptic group when compared to control group. K_d also decreased significantly when compared to control group ($p<0.01$). In Carbamazepine treated epileptic rats B_{max} ($p<0.001$) and K_d ($p<0.01$) reversed significantly to near control when compared to epileptic group. Extract of *Bacopa monnieri* treatment significantly reversed the B_{max}. 73
(p<0.001) and K_d (p<0.01) to near control when compared to epileptic group (Table-22 & Figure-26). Bacoside A treatment significantly reversed the B_{max} (p<0.001) and K_d (p<0.01) to near control when compared to epileptic group (Table-24 & Figure-28).

b) Displacement analysis of $[^3\text{H}]QNB$ using pirenzepine

The competition curve for pirenzepine against $[^3\text{H}]QNB$ fitted for one site model in all groups. The log (EC$_{50}$) decreased in epileptic group and reversed to near control in Carbamazepine, *Bacopa monnieri* and Bacoside A treated epileptic rats. K_i increased in epileptic group and reversed to near control in Carbamazepine, *Bacopa monnieri* and Bacoside A treated epileptic rats (Table-23, 25 & Figure-27, 29).

V) Real Time-PCR analysis of Muscarinic M1 receptor mRNA in pre-treated epileptic rats

Real Time-PCR analysis showed that the muscarinic M1 receptor mRNA significantly (p<0.001) decreased in epileptic condition and it reversed to near control in Carbamazepine (p<0.001) *Bacopa monnieri* (p<0.001) and Bacoside A (p<0.001) treated epileptic rats (Table-26, 27 & Figure-30, 31).
Cerebellum

I) Total Muscarinic receptor analysis in post-treated epileptic rats.

a) Scatchard analysis of [3H] QNB binding against atropine in the Cerebellum of Control, Epileptic, Epileptic+Carbamazepine, Epileptic+Bacopa monnieri and Epileptic+Bacoside A post- treated Epileptic rats

Scatchard analysis of cerebellar total muscarinic receptors status showed that the B_{max} decreased significantly ($p<0.01$) in epileptic condition when compared to control group. The K_d showed no significant change in the epileptic group compared to control. In Carbamazepine treated epileptic condition B_{max} significantly ($p<0.01$) reversed to near control when compared to epileptic group. Extract of Bacopa monnieri treatment significantly reversed the B_{max} ($p<0.01$) to near control when compared to epileptic group without any change in K_d (Table- 28 & Figure- 32). Bacoside A treatment also significantly reversed the B_{max} ($p<0.01$) to near control when compared to epileptic group with out any change in K_d (Table-30 & Figure-34).

b) Displacement analysis of $[^3\text{H}]\text{QNB}$ against Atropine

In the displacement analysis, the competitive curve fitted to a one-site model in all groups with Hill slope values near to unity. The K_i and EC_{50} decreased in epileptic condition and reversed to near control in Carbamazepine, Bacopa monnieri and Bacoside A treated epileptic rats (Table- 29, 31 & Figure- 33, 35).
II) Muscarinic M1 receptor analysis in post-treated epileptic rats

a) Scatchard analysis of 3HJ QNB binding against pirenzepine in the Cerebellum of Control, Epileptic, Epileptic+Carbamazepine, Epileptic+Bacopa monnieri and Epileptic+Bacoside A, post-treated Epileptic rats

Scatchard analysis of muscarinic M1 receptors showed that there was a significant decrease in B_{max} ($p<0.001$) and K_d ($p<0.001$) in epileptic rats compared to control group. In Carbamazepine treated epileptic group B_{max} significantly ($p<0.001$) reversed to near control when compared to epileptic group. The K_d also reversed to the near control level. Extract of Bacopa monnieri treatment significantly reversed the B_{max} ($p<0.001$) and K_d ($p<0.01$) to near control when compared to epileptic group (Table-32 & Figure-36). Bacoside A treatment significantly reversed the B_{max} ($p<0.001$) and K_d ($p<0.01$) to near control when compared to epileptic group (Table-34 & Figure-38).

b) Displacement analysis of 3HJ QNB against pirenzepine

In the displacement analysis, the competitive curve fitted to a one-site model in all groups with Hill slope values near to unity. The log (EC$_{50}$) and K_i showed a decrease in all the epileptic group. Treatment with Carbamazepine, Bacopa monnieri and Bacoside A reversed the log (EC$_{50}$) and K_i to near control when compared to epileptic group (Table-33, 35 & Figure-37, 39).
III) Real Time-PCR analysis of Muscarinic M1 receptor mRNA in post-treated epileptic rats

Real Time -PCR analysis showed that the muscarinic M1 receptor mRNA significantly decreased (p<0.001) in epileptic condition and it reversed to control level in Carbamazepine (p<0.01), Bacopa monnieri (p<0.001) and Bacoside A (p<0.001) treated epileptic rats (Table- 36, 37 & Figure- 40, 41).

IV) Muscarinic M1 receptor analysis in pre-treated epileptic rats

a) Scatchard analysis of [3H] QNB binding against pirenzepine in the Cerebellum of Control, Epileptic, Epileptic+Carbamazepine, Epileptic+Bacopa monnieri and Epileptic+Bacoside A, pre- treated Epileptic rats

Scatchard analysis of Muscarinic M1 receptors showed that there was a significant increase in B_{max} (p<0.001) in epileptic rats when compared to control group. K_d showed no significant change. In Carbamazepine treated epileptic group B_{max} significantly (p<0.01) reversed to near control when compared to epileptic group. Extract of Bacopa monnieri treatment significantly reversed the B_{max} (p<0.01) to near control when compared to epileptic group (Table- 38 & Figure- 42). Bacoside A treatment also significantly reversed the B_{max} (p<0.01) to near control when compared to epileptic group with out any significant change in K_d (Table-40 & Figure- 44).
b) Displacement analysis of $[^3]$H QNB against pirenzepine

In the displacement analysis, the competitive curve fitted to a one-site model in all groups with Hill slope values near to unity. The log (EC$_{50}$) and K_i showed no significant change in the epileptic group compared to control. Carbamazepine, Bacopa monnieri and Bacoside A treatment decreased the log (EC$_{50}$) and K_i (Table-39, 41 & Figure-43, 45).

Brainstem

1) Total Muscarinic receptor analysis in post-treated epileptic rats.

Scatchard analysis showed that the B_{max} decreased significantly ($p<0.001$) in the brainstem of epileptic rats with a significant decrease ($p<0.01$) in the K_d when compared to control group. In Carbamazepine treated epileptic rats B_{max} significantly ($p<0.001$) reversed back to near control when compared to epileptic group. The K_d also reversed to near control when compared to epileptic group. Bacopa monnieri treatment significantly reverse the B_{max} ($p<0.001$) to near control when compared to epileptic group with a significant increase in K_d (Table- 42 & Figure- 46). Bacoside A treatment significantly reversed the B_{max} ($p<0.01$) and K_d ($p<0.01$) to near control when compared to epileptic group (Table-44 & Figure- 48).

In the displacement analysis, the competitive curve fitted to a one-site model in all groups with Hill slope values near to unity. The log (EC$_{50}$) and K$_i$ showed no change in all the experimental groups. (Table- 43, 45 & Figure- 47, 49).

II) Muscarinic M1 receptor analysis in post-treated epileptic rats.

Scatchard analysis showed that the B$_{max}$ decreased significantly (p<0.001) in epileptic condition when compared to control group. K$_d$ also decreased significantly when compared to control group (p<0.01). In Carbamazepine treated epileptic condition B$_{max}$ (p<0.001) and K$_d$ (p<0.05) were significantly reversed to near control when compared to epileptic group. Bacopa monnieri extract treatment significantly reversed the B$_{max}$ (p<0.001) to near control when compared to epileptic group. K$_d$ also reversed to near control when compared to epileptic group (p<0.01) (Table- 46 & Figure- 50). Bacoside A treatment also significantly reversed the B$_{max}$ (p<0.001) and K$_d$ (p<0.01) to near control when compared to epileptic group (Table- 48 & Figure- 52).

The competition curve for pirenzepine against $[^3]H$QNB fitted for one site model in all groups. The K$_i$ showed an increase in epileptic group which reversed to
control in the *Bacopa monnieri* and Bacoside A treated rat groups (Table- 47, 49 & Figure- 51, 53). Carbamazepine did not reverse the increased K_i in epileptic rats.

III) Real Time-PCR analysis of Muscarinic M1 receptor mRNA in post-treated epileptic rats

Real Time-PCR analysis showed that the muscarinic M1 receptor mRNA significantly decreased ($p<0.001$) in epileptic condition and it reversed to near control in Carbamazepine treated ($p<0.001$), *Bacopa monnieri* ($p<0.001$) and Bacoside A ($p<0.001$) treated epileptic rats (Table-50, 51 & Figure- 54, 55).

GLUTAMATE RECEPTOR ALTERATIONS DURING EPILEPSY AND AFTER THE TREATMENT WITH *Bacopa monnieri* EXTRACT

Hippocampus

I) Total Glutamate receptor analysis in post-treated epileptic rats.

a) *Scatchard analysis of $[^3H] Go glutamate binding against glutamate in the Hippocampus of Control, Epileptic and Epileptic+Bacopa monnieri treated Epileptic rats*

Scatchard analysis showed that the B_{max} decreased significantly ($p<0.01$) in the hippocampus of epileptic rats without a significant change in K_d. Extract of *Bacopa monnieri* treatment significantly reversed the B_{max} ($p<0.01$) to near control when compared to epileptic group without any change in K_d (Table-52 & Figure-56).
b) Displacement analysis of $[^3]$H Glutamate against glutamate

In the displacement analysis, the competitive curve fitted to a one-site model in all groups with Hill slope values near to unity. The log (EC$_{50}$) and K_i showed a significant decrease in the epileptic group which reversed to near control by Bacopa monnieri treatment (Table- 53 & Figure- 57).

II) Real Time-PCR analysis of NMDA R1 receptor in post-treated epileptic rats.

Real Time-PCR analysis showed that the NMDA R1 receptor mRNA significantly decreased (p<0.01) in epileptic group and it reversed to control in Bacopa monnieri treated (p<0.05) epileptic rats (Table- 54 & Figure- 58).

Cerebellum

I) Total Glutamate receptor analysis in post-treated epileptic rats.

a) Scatchard analysis of $[^3]$H Glutamate binding against glutamate in the Cerebellum of Control, Epileptic and Epileptic+Bacopa monnieri post- treated Epileptic rats

Scatchard analysis showed that the B_{max} decreased significantly (p<0.001) in the cerebellum of epileptic rats with out a significant change in K_d. Bacopa monnieri treatment significantly reversed the B_{max} (p<0.001) to near control when compared to epileptic group with out a change in K_d (Table- 55 & Figure- 59).

b) Displacement analysis of $[^3]$H Glutamate against glutamate

In the displacement analysis, the competitive curve fitted to a one-site model in all groups with Hill slope values near to unity. The log (EC$_{50}$) and K_i showed a
decrease in the epileptic group. Treatment with *Bacopa monnieri* reversed the K_i to near control. *Bacopa monnieri* treatment also increased the EC_{50} compared to the epileptic group (Table-56 & Figure-60).

II) Real Time-PCR analysis of NMDA R1 and metabotrophic glutamate 8 receptor in post-treated epileptic rats.

Real Time-PCR analysis showed that the NMDA R1 receptor mRNA significantly decreased ($p<0.001$) in epileptic condition and it reversed to near control in *Bacopa monnieri* ($p<0.01$) treated epileptic rats (Table- 57 & Figure- 61). Real Time-PCR analysis showed that the metabotrophic glutamate 8 receptor mRNA significantly decreased ($p<0.01$) in epileptic condition and it reversed to near control in *Bacopa monnieri* ($p<0.05$) treated epileptic rats (Table- 58 & Figure- 62).

Brainstem

I) Total Glutamate receptor analysis in post-treated epileptic rats.

a) Scatchard analysis of $[^3H] $Glutamate binding against glutamate in the brainstem of Control, Epileptic and Epileptic+Bacopa monnieri treated Epileptic rats

Scatchard analysis showed that the B_{max} decreased significantly ($p<0.01$) in the Brainstem of epileptic rats with out a significant change in K_d. *Bacopa monnieri* treatment significantly reversed the B_{max} ($p<0.01$) to near control when compared to epileptic group with out a change in K_d (Table- 59 & Figure- 63).
b) Displacement analysis of $[^3H]$ Glutamate against glutamate

In the displacement analysis, the competitive curve fitted to a one-site model in all groups with Hill slope values near to unity. The log (EC$_{50}$) and K_i showed no significant change in experimental groups. (Table- 60 & Figure- 64).

II) Real Time-PCR analysis of NMDA R1 and metabotrophic glutamate 8 receptor in post-treated epileptic rats.

Real Time-PCR analysis showed that the NMDA R1 receptor mRNA significantly decreased (p<0.001) in epileptic condition and it reversed to near control in *Bacopa monnieri* (p<0.01) treated epileptic rats (Table- 61 & Figure- 65). Real Time-PCR analysis showed that the metabotrophic glutamate 8 receptor mRNA significantly decreased (p<0.001) in epileptic condition and it reversed to near control in *Bacopa monnieri* (p<0.05) treated epileptic rats (Table- 58 & Figure- 62)

Cerebral Cortex

I) Total Glutamate receptor analysis in post-treated epileptic rats.

a) Scatchard analysis of $[^3H]$ Glutamate binding against glutamate in the Cerebral Cortex of Control, Epileptic and Epileptic+Bacopa monnieri treated Epileptic rats

Scatchard analysis showed that the B_{max} decreased significantly (p<0.01) in the cerebral cortex of epileptic rats with out any significant change in K_d. *Bacopa monnieri* treatment significantly reversed the B_{max} (p<0.01) to near control when compared to epileptic group with out a change in K_d (Table- 63 & Figure- 67).

83
b) Displacement analysis of [3H] Glutamate against glutamate

In the displacement analysis, the competitive curve fitted to a one-site model in all groups with Hill slope values near to unity. The log \(\text{EC}_{50} \) and \(K_i \) showed no significant change in experimental groups. (Table- 64 & Figure- 68).

NEO-TIMM STAINING IN THE HIPPOCAMPUS IN POST-TREATED EPILEPTIC RATS

Neo-Timm silver staining in the Hippocampus showed that densely stained CA1 region of the epileptic rats compared to control which confirms mossy fibre sprouting. Treatment with Carbamazepine and *Bacopa monnieri* did not show reversal to the control status (Figure- 69 a-d).

ELECTROENCEPHALOGRAM ANALYSIS IN PRE- AND POST-TREATED EPILEPTIC RATS.

Electroencephalogram analysis showed that there is a change in the brain activity of temporal areas of epileptic rats when compared to control. Treatment with Carbamazepine, *Bacopa monnieri* and Bacoside A decreased the change in the brain activity to near control range in both pre-treated and post-treated groups (Figure- 70 a-e, 71 a-e).
MORRIS WATER MAZE EXPERIMENT IN THE POST-TREATED EPILEPTIC RATS

Morris water maze experiment showed a significant increase in the escape latency of epileptic group when compared to control. *Bacopa monnieri* treatment significantly (*p* < 0.001) reversed the escape latency to near control (Table- 65, Figure-72).

Time spent in the platform quadrant of the epileptic rats showed a significant decrease (*p* < 0.01) when compared to control. *Bacopa monnieri* post-treatment (*p* < 0.01) reversed the time spent in the platform quadrant to near control (Table- 66, Figure-73).