LIST OF FIGURES

Fig. 1 : Design of Petri-dish experiment (Mean Log Score Method).

Fig. 2 : Glass observation chamber to study prey searching behaviour of predatory nematodes.

Fig. 3 : Schematic representation of prey searching and attraction behaviour of predatory nematodes.

Fig. 4 : Attraction responses of predators in absence of prey and bacteria (control).

Fig. 5 : Attraction responses of predators towards bacteria cultivated on agar.

Fig. 6 : Attraction responses of predators towards excised and non-excised individuals of Hirschmanniella.

Fig. 7 : Attraction responses of predators towards excised and non-excised prey individuals belonging to saprophagous nematodes.

Fig. 8 : Attraction responses of predators towards excised and non-excised prey individuals belonging to epidermal feeders.

Fig. 9 : Attraction responses of predators towards excised and non-excised prey individuals belonging to migratory semi endodermal feeders.

Fig. 10 : Attraction responses of predators towards excised and non-excised prey individuals belonging to endodermal feeders.

Fig. 11 : Attraction responses of predators towards excised and non-excised prey individuals belonging to virus vectors.

Fig. 12 : Attraction responses of predators towards excised and non-excised prey individuals belonging to cortical feeders.

Fig. 13 : Attraction responses of predators towards excised and non-excised prey individuals belonging to predatory nematodes.

Fig. 14 : Attraction responses of predators towards prey nematodes belonging to different trophic groups.
Fig. 15: Experimental design to test the influence of distance of prey on the attraction of predatory nematodes.

Fig. 16: Effect of prey density on the attraction responses of predators towards prey nematodes.

Fig. 17: Effect of time of prey incubation on the attraction responses of predators towards prey nematodes.

Fig. 18: Effect of temperatures on the attraction responses of predators towards prey nematodes.

Fig. 19: Effect of starvation of predators on the attraction responses of predators towards prey nematodes.

Fig. 20: Effect of agar concentrations on the attraction responses of predators towards prey nematodes.

Fig. 21: Effect of agar thicknesses on the attraction responses of predators towards prey nematodes.

Fig. 22: Effect of distance of inoculation of *M. bastiani* and *A. thornei* from prey on their attraction responses.

Fig. 23: Effect of distance of inoculation of *L. baldus* and *D. major* from prey on their attraction responses.

Fig. 24: Aggregation behaviour of predatory nematodes with saprophagous nematodes: Number of feeding sites formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 25: Aggregation behaviour of predatory nematodes with epidermal feeders: Number of feeding sites formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 26: Aggregation behaviour of predatory nematodes with migratory semi endodermal feeders: Number of feeding sites formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 27: Aggregation behaviour of predatory nematodes with endodermal feeders: Number of feeding sites formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 28: Aggregation behaviour of predatory nematodes with cortical feeders: Number of feeding sites formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*. 
Fig. 29: Aggregation behaviour of predatory nematodes with virus vectors: Number of feeding sites formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 30: Aggregation behaviour of predatory nematodes with predators taken as prey: Number of feeding sites formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 31: Aggregation behaviour of predatory nematodes with saprophagous nematodes: Duration (m) of existence of a feeding site formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 32: Aggregation behaviour of predatory nematodes with epidermal feeders: Duration (m) of existence of a feeding site formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 33: Aggregation behaviour of predatory nematodes with migratory semi-endodermal feeders: Duration (m) of existence of a feeding site formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 34: Aggregation behaviour of predatory nematodes with endodermal feeders: Duration (m) of existence of a feeding site formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 35: Aggregation behaviour of predatory nematodes with cortical feeders: Duration (m) of existence of a feeding site formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 36: Aggregation behaviour of predatory nematodes with virus vectors: Duration (m) of existence of a feeding site formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 37: Aggregation behaviour of predatory nematodes with predators taken as prey: Duration (m) of existence of a feeding site formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 38: Aggregation behaviour of predatory nematodes with saprophagous nematodes: Time (m) of site formation taken by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 39: Aggregation behaviour of predatory nematodes with epidermal feeders: Time (m) of site formation taken by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*. 
Fig. 40: Aggregation behaviour of predatory nematodes with migratory semi endodermal feeders: Time (m) of site formation taken by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 41: Aggregation behaviour of predatory nematodes with endodermal feeders: Time (m) of site formation taken by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 42: Aggregation behaviour of predatory nematodes with cortical feeders: Time (m) of site formation taken by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 43: Aggregation behaviour of predatory nematodes with virus vectors: Time (m) of site formation taken by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 44: Aggregation behaviour of predatory nematodes with predators taken as prey: Time (m) of site formation taken by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 45: Aggregation behaviour of predatory nematodes with saprophagous nematodes: Time (in percent) spent on feeding or aggregation at a feeding site by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 46: Aggregation behaviour of predatory nematodes with epidermal feeders: Time (in percent) spent on feeding or aggregation at a feeding site by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 47: Aggregation behaviour of predatory nematodes with migratory semi endodermal feeders: Time (in percent) spent on feeding or aggregation at a feeding site by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 48: Aggregation behaviour of predatory nematodes with endodermal feeders: Time (in percent) spent on feeding or aggregation at a feeding site by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 49: Aggregation behaviour of predatory nematodes with cortical feeders: Time (in percent) spent on feeding or aggregation at a feeding site by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*. 
Fig. 50: Aggregation behaviour of predatory nematodes with virus vectors: Time (in percent) spent on feeding or aggregation at a feeding site by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 51: Aggregation behaviour of predatory nematodes with predators taken as prey: Time (in percent) spent on feeding or aggregation at a feeding site by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 52: Aggregation behaviour of predatory nematodes with saprophagous nematodes: Total number of predators present at a feeding site.

Fig. 53: Aggregation behaviour of predatory nematodes with epidermal feeders: Total number of predators present at a feeding site.

Fig. 54: Aggregation behaviour of predatory nematodes with migratory semi endodermal feeders: Total number of predators present at a feeding site.

Fig. 55: Aggregation behaviour of predatory nematodes with endodermal feeders: Total number of predators present at a feeding site.

Fig. 56: Aggregation behaviour of predatory nematodes with cortical feeders: Total number of predators present at a feeding site.

Fig. 57: Aggregation behaviour of predatory nematodes with virus vectors: Total number of predators present at a feeding site.

Fig. 58: Aggregation behaviour of predatory nematodes with predators taken as prey: Total number of predators present at a feeding site.

Fig. 59: Aggregation behaviour of predatory nematodes with saprophagous nematodes: Number of predators doing feeding or showing pre-or post-feeding aggregation at a feeding site.

Fig. 60: Aggregation behaviour of predatory nematodes with epidermal feeders: Number of predators doing feeding or showing pre- or post-feeding aggregation at a feeding site.

Fig. 61: Aggregation behaviour of predatory nematodes with migratory semi endodermal feeders: Number of predators doing feeding or showing pre-or post-feeding aggregation at a feeding site.
Fig. 62: Aggregation behaviour of predatory nematodes with endodermal feeders: Number of predators doing feeding or showing pre-or post-feeding aggregation at a feeding site.

Fig. 63: Aggregation behaviour of predatory nematodes with cortical feeders: Number of predators doing feeding or showing pre-or post-feeding aggregation at a feeding site.

Fig. 64: Aggregation behaviour of predatory nematodes with virus vectors: Number of predators doing feeding or showing pre-or post-feeding aggregation at a feeding site.

Fig. 65: Aggregation behaviour of predatory nematodes with predators taken as prey: Number of predators doing feeding or showing pre-or post-feeding aggregation at a feeding site.

Fig. 66: Aggregation behaviour of predatory nematodes with different prey trophic groups: Number of feeding sites formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major.*

Fig. 67: Aggregation behaviour of predatory nematodes with different prey trophic groups: Duration (m) of existence of a feeding site formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major.*

Fig. 68: Aggregation behaviour of predatory nematodes with different prey trophic groups: Time (in percent) spent on feeding or aggregation by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major.*

Fig. 69: Aggregation behaviour of predatory nematodes with different prey trophic groups: Total number of predators present at a feeding site.

Fig. 70: Aggregation behaviour of predatory nematodes with different prey trophic groups: Number of predators doing feeding or showing pre-or post-feeding aggregation at a feeding site.

Fig. 71: Aggregation behaviour of predatory nematodes with different prey trophic groups: Time (m) of site formation taken by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major.*

Fig. 72: Effect of prey density on the number of feeding sites formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major.*

Fig. 73: Effect of prey density on the duration (m) of existence of feeding site formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major.*
Fig. 74: Effect of prey density on the time (m) of actual feeding done by *M. hastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 75: Effect of prey density on the time (m) of post-feeding aggregation shown by *M. hastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 76: Effect of prey density on the total number of predators present at a feeding site.

Fig. 77: Effect of prey density on the number of predators doing feeding at a feeding site.

Fig. 78: Effect of prey density on the number of predators showing pre- or post-feeding aggregation at a feeding site.

Fig. 79: Effect of prey density on the time (m) of site formation by *M. hastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 80: Effect of time of prey incubation on the number of feeding sites formed by *M. hastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 81: Effect of time of prey incubation on the duration (m) existence of feeding site formed by *M. hastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 82: Effect of time of prey incubation on the time (m) of actual feeding done by *M. hastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 83: Effect of time of prey incubation on the time (m) of post-feeding aggregation shown by *M. hastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 84: Effect of time of prey incubation on the total number of predators present at a feeding site.

Fig. 85: Effect of time of prey incubation on the number of predators doing feeding at a feeding site.

Fig. 86: Effect of time of prey incubation on the number of predators showing pre-or post-feeding aggregation at a feeding site.

Fig. 87: Effect of time of prey incubation on the time (m) of site formation by *M. hastiani*, *A. thornei*, *L. baldus* and *D. major*.
Fig. 88: Effect of temperatures on the number of feeding sites formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 89: Effect of temperatures on the duration (m) of existence of feeding sites formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 90: Effect of temperatures on the time (m) of actual feeding done by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 91: Effect of temperatures on the time (m) of post-feeding aggregation shown by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 92: Effect of temperatures on the total number of predators present at a feeding site.

Fig. 93: Effect of temperatures on the number of predators doing feeding at a feeding site.

Fig. 94: Effect of temperatures on the number of predators showing pre-or post-feeding aggregation at a feeding site.

Fig. 95: Effect of temperatures on the time (m) of site formation by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 96: Effect of starvation of predators on the number of feeding sites formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 97: Effect of starvation of predators on the duration (m) of existence of feeding site formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 98: Effect of starvation of predators on the time (m) of actual feeding done by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 99: Effect of starvation of predators on the time (m) of post-feeding aggregation shown by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*. 
Fig. 100: Effect of starvation of predators on the total number of predators present at a feeding site.

Fig. 101: Effect of starvation of predators on the number of predators doing feeding at a feeding site.

Fig. 102: Effect of starvation of predators on the number of predators showing pre-or post-feeding aggregation at feeding site.

Fig. 103: Effect of starvation of predators on the time (m) of site formation by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 104: Effect of agar concentrations on the number of feeding sites formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 105: Effect of agar concentrations on the duration (m) of existence of feeding site formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 106: Effect of agar concentrations on the time (m) of actual feeding done by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 107: Effect of agar concentrations on the time (m) of post-feeding aggregation at a feeding site.

Fig. 108: Effect of agar concentrations on the total number of predators present at a feeding site.

Fig. 109: Effect of agar concentrations on the number of predators doing feeding at a feeding site.

Fig. 110: Effect of agar concentrations on the number of predators showing pre-or post-feeding aggregation at feeding site.

Fig. 111: Effect of agar concentrations on the time (m) of site formation by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 112: Effect of agar thicknesses on the number of feeding sites formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 113: Effect of agar thicknesses on the duration (m) of existence of feeding site formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*. 
Fig. 114 : Effect of agar thicknesses on the time (m) of actual feeding done by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 115 : Effect of agar thicknesses on the time (m) of post-feeding aggregation shown by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 116 : Effect of agar thicknesses on the total number of predators present at a feeding site.

Fig. 117 : Effect of agar thicknesses on the number of predators doing feeding at a feeding site.

Fig. 118 : Effect of agar thicknesses on the number of predators showing pre- or post-feeding aggregation at a feeding site.

Fig. 119 : Effect of agar thicknesses on the time (m) of site formation by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 120 : Effect of pH concentrations on the number of feeding sites formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 121 : Effect of pH concentrations on the duration (m) of existence of feeding site formed by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 122 : Effect of pH concentrations on the time (m) of actual feeding done by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 123 : Effect of pH concentrations on the time (m) of post-feeding aggregation shown by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*.

Fig. 124 : Effect of pH concentrations on the total number of predators present at a feeding site.

Fig. 125 : Effect of pH concentrations on the number of predators doing feeding at a feeding site.

Fig. 126 : Effect of pH concentrations on the number of predators showing pre- or post-feeding aggregation at a feeding site.

Fig. 127 : Effect of pH concentrations on time (m) of site formation by *M. bastiani*, *A. thornei*, *L. baldus* and *D. major*. 