CHAPTER ONE
BACKGROUND OF THE STUDY

1.0 Introduction

Teaching language as an activity is important especially when learners lack the expected proficiency. In Tamilnadu, it has been observed that many ESL learners of engineering studies in the undergraduate level, specifically those from regional medium schools do not have the required proficiency in formal speaking and writing skills. It is because of several factors such as inadequate practice in the classroom, poor vocabulary, examination oriented writing, lack of exposure to English, speaking community, limited reading habits and so on.

The Indian National Knowledge Commission Report (March 2009) says that engineering education is the key to transform India’s economy. The quality of teaching and research in this sphere will play a critical role in the emergence of our country as a global knowledge leader. It will provide vital inputs for enhancing productivity across sectors. In the past two decades, we have seen an eight-fold increase in the number of institutions imparting engineering education. Yet, there are some fundamental issues that need to be addressed.

Deccan Chronicle (2012) a daily newspaper has found in a recent survey that four out of every ten engineers in India are unable to understand English, which includes their day-to-day conversation and writing correct sentences. The newspaper survey reports around 36 per cent of engineering graduates are unable to read official reports and transcripts and derive information out of them, even when the information is explicitly stated.
While commenting on the poor writing skills of the engineering graduates Mr. R. Rajaram, a leading HR of an Indian IT company says “They write incomplete sentences; their punctuation is non-existent and grammar very poor. This is why most companies have readymade templates with sentences, and employees just have to choose what they have to say”. (The Hindu, 2012)

1.1 Research Problem

The study focuses on the problems of organization in writing for academic purposes. The problems that the students have in writing came to light when their exam papers were valued during the central valuation of Government College of Technology, Coimbatore in the year 2010. Most of the teachers who valued the students answer scripts started to complain that the majority of students have not secured full marks in Part B section especially in the jumbled sentences and breaking of thoughts in writing. Many teachers felt that majority of students do not know what to write and more importantly how to write in English properly. One of the major hurdles in writing is the poor organizing skill of the students. They are not aware of the notion of topic sentences, the use of supporting sentences, closing sentences and linkers. As a result the write up of the student writing lack cohesion and coherence.

1.2 Assumption

The following are the assumptions of the study based on the informal discussion during the central valuation:

- There are basic problems in writing.
• If a short-term course in writing is administered to the learners on organizing skills, there would be a considerable improvement in the writing skills of the students with the special reference to organizing.

• Pictures would stimulate learners to write IELTS passage with special reference to organization.

• The prescribed English textbook for Technical English I and II may not have any specific activities for writing skills focusing organizing skills.

1.3 Hypothesis

The research is based on the hypothesis that a designed course focusing on organizational features of writing will result in considerable improvement in the students’ writing skills.

1.4 Research Questions

The study addresses the following questions:

1. Do students have any problems in using cohesive devices and achieve coherence in writing?

2. Are students good in all forms of writing with special reference to organization focusing IELTS passage and short story?

1.5 Scope and Limitation of the Study

The focus of the study is to develop the organizing skills of writing by using materials consisting of tasks and activities. The study was carried out with 55 students from 1st year B.E/B. Tech students of JCT College of Engineering and Technology, Pichanur, Coimbatore.
The study focuses only the organizing skills in IELTS passage (with pictures), a short story and jumbled sentences. It mainly focuses on organization within a paragraph. So, the result of the study may not be true for other aspects of writing. The intervention was planned only for 20 contact hours. A longer programme might have yielded more substantial data.

1.6 Tools

The following tools were used in the study

- Questionnaire for the English teachers of the Engineering Colleges in Coimbatore District.
- Informal interviews with teacher of English from other colleges
- Diagnosis test,
- Pretest
- Post Test

This chapter attempts to discuss the history of English Language, importance of Macaulay’s Minutes, technical education and its development in India. It also presents scenario of engineering and technological education in the pre-independence era along with the background and growth of AICTE. This chapter ends with the teaching schemes in B.E/B.Tech courses and problems encountered by the engineering students and key issues raised by the ‘Employability Report 2011’.

1.7 History of the English in India

The British Colonists arrived in India in the early 17th century in the form of the East India Company (EIC), were more interested in trade than in imperial possessions. The company at that time needed employees to learn local languages, so that they could negotiate the best deals
and ensure their agents did not divert profit into their own pockets. By the early 19th century the ‘core business’ of the company was shifted from trade to managing India on behalf of the British Crown.

1.8 Importance of Macaulay’s Minute

In 1835, Thomas Babington Macaulay, a law officer to the Supreme Council, drafted a document called ‘Macaulay’s Minutes on Education’. In this he appears to deprecate the value of Indian languages, elevate the qualities of English, and declare that English should henceforth become the medium of education in India. He adjudicates on a narrow legal point: whether the money set aside in the Company’s 1813 charter renewal for public instruction can be diverted from supporting classical Indian languages to funding the diffusion of ‘useful knowledge’ through English. He states:

[…] it is impossible for us, with our limited means, to attempt to educate the body of the people. We must at present do our best to form a class who may be interpreters between us and the millions whom we govern – a class of persons Indian in blood and colour, but English in tastes, in opinions, in morals and in intellect”.

The main objectives of Lord Macaulay’s famous ‘Minutes of 1835 about teaching English are, ‘revival and improvement of literature’ and the ‘promotion of the knowledge of science’. In any case the Indians were forced to learn English to meet the “immediate compulsion of communication between the rulers and the native habitants. Naik (1982)

Not surprisingly, Lord Macaulay is called the Father of English language education in India. In his letter to his own father he states: “We must at present do our best to form a class
who may be interpreters between us and the millions whom we govern, a class of persons, Indian
in blood and colour, but English in taste, in opinions, in morals and in intellect”. (George Braine
1961:61)

1.9 History Divided into Five Phases.

- The East India Company succeeded in establishing its overwhelming empire in India by
 the end of the eighteenth century.

- The British parliament renewed its charter not only for trading but also for ruling.

- The Charter Act of 1813 provided an annual sum not less than one-lakh rupees for the
 promotion of learning among Indians.

- 1857 – The year of the Sepoy Mutiny. This was also the year when the first three Indian
 Universities were set up at Bombay, Calcutta and Madras.

- 1904 – Indian Universities Act was passed which gave the British government a tighter
 control over colleges and universities.

1.10 English Education in India

India is a unique geographical territory where diversity in diversity is seen. The diversity
is not only seen in geography but also in culture, tradition, customs and languages. According to
the 1961 census, India has 1652 mother tongues out of which 320 are major languages. The
survey itself clearly tells that India is a multilingual nation. In spite of these diversities, India
adopted English and has given it a remarkable place in the history of Indian education system.
The history of English Language Teaching (ELT) in India is vast, rich and eventful; a vast amount of aesthetic writing in English is available in India. English occupies a unique position because it is used by a large number of people. It has an important role in the growth of nationalism at the time of freedom has struggle, accelerated the process of modernization and helped to overcome the age old and evil practices. English is a powerful communicative language used in various walks of life like business, politics and education because of its richness, flexibility, elegance and dignity in nature. It has been enjoying a privileged status in India since the British rule.

1.11 Teaching of English at the Academic Level

There was a drastic change in the teaching of English at the academic level and this is divided into four phases.

1.11.1 Phase I

Phase I covers more than twenty years (1835-1856). In this phase the teaching of English included the teaching of pronunciation, vocabulary, reading, writing, grammar and composition. Translation was taught as a separate skill. The main objective of teaching was to develop the ability to read with comprehension, write grammatically correct English and speak intelligibly. There was no separate place for teaching prose, poetry and composition in the school curriculum of English education.

1.11.2 Phase II

In Phase II (1857-1882), English teaching began from the third standard of all English schools in the nation with a lot of changes. Encouraging rote memory of the students, permitting
teachers occasionally to use vernacular language, teaching rules of grammar, training in speech and function based dialogues on real life situations were some of them.

1.11.3 Phase III

The third Phase (1883-1935) is a very crucial phase where many innovative methods were introduced and for the first time an English textbook was published with the approval of the government in the Fort St. George Gazette in the year 1903. The teaching of conversation marked the importance of speech in the language learning. In 1904 the Direct method was introduced in India by the Director of Public Instruction, East Bengal and Assam, and it greatly influenced the English Language Teaching in India and in turn recommended English as the medium of instruction in the secondary schools. Fluency in speech along with reading, pronunciation and vocabulary was encouraged. At that time, Michael West pointed out that the Direct Method was not suitable for Indian students and emphasized on the importance of reading. Writing was given a secondary place. In 1980, the popular concept ‘language through literature’, was tried for the first time in Madras Presidency College. Grammar Translation Method was in practice which did not consider the four skills and ignored the fluency in speech and phonetics.

1.11.4 Phase IV

In the fourth phase (1835-1947) Harold E. Palmer’s ideas were introduced which advocated that a scientific study of a language should integrate linguistic, pedagogy and psychology. He introduced the order of four language skills – Listening, Speaking, Reading and Writing (LSRW).
1.12 English as an Indian Language

English has been spoken in India from colonial days especially from the famous ‘Macaulay’s Minutes’ of 1835. However, it has always been exceptionally difficult to estimate exactly how many people in India speak English language. Graddol (2007) found that ‘The difficulty comes from the very wide range of proficiencies – what counts as an English speaker, when very many know a few words, but only a few have a high level of competence in both local and more standard varieties, Another reason for difficulty is that Indian states have evolved very different and changing, policies towards English-medium schools’.

1.13 Role of English in India

English continues to be the language of business, commerce, administration, the law and higher education. This is in spite of the official efforts to promote Indian languages in all areas. Most educated Indians communicate with one another in English rather than in Indian languages, even if they have one common language in which they can communicate with each other. This is because English is a language that provides upward economic and social mobility. At one point of time, English was perceived as the library language. Today it is the language of wider communication with both spoken and written skills being treated as equally important. In higher academic contexts, however, the need to use English for all kinds of writing purpose gains importance. As such, it is imperative that Indian students are to be taught to write, edit and revise their own written work.
Even though in statistical terms, English is spoken by a relatively smaller number of the Indian population, there are many more ‘knowers’ of English. As far as syntax is concerned, Indian English is very much the same as standard British English, but at the level of vocabulary it includes many words from Indian languages. Thus, there is a lot of code-mixing in addition to code-switching among the Indian speakers of English. Therefore, this is one of the reasons for errors committed by most of the Indian users of English.

1.14 Demand for English

FIGURE 1.0
THE THREE CIRCLES OF ENGLISH PROPOSED BY KACHRU (1995)

As shown in the Figure 1.0 one of the most familiar ways of representing the global community of English speakers is in terms of three circles (Fig. 1.0). The ‘inner’ circle represents the native speakers; the ‘outer circle’ consists of second-language speakers in countries like India. The ‘expanding circle’ is the ever-increasing number of people learning English as a foreign language. The three circles representation was first described in this way by
the sociolinguist Braj Kachru in 1985. By the time, *The Future of English?*\(^1\) was published in 1997, such a model was already failing to capture the increasing importance of the outer circle, and the degree to which ‘foreign language’ learners in some countries – especially in Europe was becoming more like second language users.

1.15 Engineering and Technological Education in Pre-Independence Era

The impulse for creation of centers of technical training came from the British rulers of India and it arose out of the necessity for the training of overseers for construction and maintenance of public buildings, roads, canals and ports and for the training of artisans and craftsmen for the use of instruments and apparatus needed for the army, the navy and the survey department. The superintending engineers were mostly recruited from Britain from the Cooper's Hill College and this policy applied as well to foremen and artificers; but this could not be done in the case of lower grades- craftsmen, artisans and sub-overseers who were recruited locally. As they were mostly illiterate, efficiency was low. The necessity to make them more efficient by giving them elementary lessons in reading, writing, arithmetic, geometry and mechanics, led to the establishment of industrial schools attached to Ordinance Factories and other engineering establishments. While it is stated that such schools existed in Calcutta (Kolkata) and Bombay (Mumbai) as early as 1825, the first authentic account we have is that of an industrial school established at Guindy, Madras (Chennai), in 1842, attached to the Gun Carriage Factory. A school for the training of overseers was known to exist in Pune in 1854.

\(^1\) This book is about the English language in the 21st century authored by David Graddol (First Edition -1997)
The first engineering college was established in Uttar Pradesh in 1847 for training of Civil Engineers at Roorkee, which made use of the large workshops and public buildings there that were erected for the Upper Ganges Canal. The Roorkee College officially called as the Thomason Engineering College was never affiliated to any university but gave diplomas considered to be equivalent to degrees. In pursuance of the Government policy, three Engineering Colleges were opened by about 1856 in the three Presidencies. In Bengal, a College called the Calcutta College of Civil Engineering was opened at the Writers' Buildings in November 1856; the name was changed to Bengal Engineering College in 1857, and it was affiliated to Calcutta University. It gave a licentiate course in Civil Engineering. In 1865 it was amalgamated with the Presidency College. Later, in 1880, it was detached from the Presidency College and shifted to its present quarters at Sibpur (West Bengal), occupying the premises and buildings belonging to the Bishop's College.

Proposals for start an Engineering College at Bombay city failed for some reasons. The Overseers' school at Poona eventually became Poona College of Engineering and affiliated to Bombay University in 1858. For a long time, this was the only College of Engineering in the Western Presidency. In Madras Presidency, the industrial school attached to Gun Carriage Factory became ultimately the Guindy College of Engineering and affiliated to Madras University (1858).

The educational work in the three Colleges of Sibpur, Puna and Guindy had been more or less similar. They all had licentiate courses in civil engineering up to 1880, when they organized degree classes in this branch alone. After 1880, the demand for Mechanical and Electrical Engineering was felt, but the three Engineering Colleges started only apprenticeship classes in
these subjects. The Victoria Jubilee Technical Institute, which was started at Bombay in 1887, had as its objective the training of licentiates in Electrical, Mechanical and Textile Engineering. In 1915, the Indian Institute of Science, Bangalore, opened Electrical Engineering classes under Dr. Alfred Hay and began to give certificates and associate ships, the latter being regarded equivalent to a degree.

In Bengal, the leaders of the Swadeshi Movement organised in 1907 a National Council of Education which tried to organize a truly National University. Out of the many institutions it started, only the College of Engineering and Technology at Jadavpur survived. It started granting diplomas in Mechanical and Engineering course in 1908 and in Chemical Engineering in 1921.

The Calcutta University Commission debated the pros and cons of the introduction of degree courses in mechanical and electrical engineering. One of the reasons cited from the recommendations of the Indian Industrial Commission (1915), under the Chairmanship of Sir Thomas (Holland) introduced some of the electrical engineering courses, which is included in the report: “We have not specifically referred to the training of electrical engineers, because electrical manufacturers have not yet been started in India, and there is only scope for the employment of men to do simple repair work, to take charge of the running of electrical machinery, and to manage and control hydroelectric and steam-operated stations. The men required for these three classes of work will be provided by the foregoing proposals for the training of the various grades required in mechanical engineering. They will have to acquire in addition, special experience in electrical matters, but, till this branch of engineering is developed on the constructional site, and the manufacture of electrical machinery taken in hand, the managers of electrical undertakings must train their own men, making such use as they can of the
special facilities offered for instruction at the engineering colleges and the Indian Institute of Science.”

The credit of first starting degree classes in Mechanical Engineering, Electrical Engineering and Metallurgy goes to the University of Banaras, thanks to the foresight of its great founder, Pt. Madan Mohan Malaviya (1917). About fifteen years later, in 1931-32, The Bengal Engineering College at Sibpur started Mechanical and Electrical Engineering courses in 1935-36 and courses in Metallurgy in 1939-40. Courses in these subjects were also introduced at Guindy and Poona about the same time. Quite a number of engineering colleges have been started since August 15, 1947. It is due to the realization that India has to become a great industrial country and would require a far larger number of engineers than could be supplied by the older institutions.

1.16 Background of Technical Education (AICTE)

The beginning of formal Technical Education in India can be dated back to the mid 19th century. The major policy initiatives in the pre-independence period included appointment of the Indian Universities Commission in 1902, issue of the Indian Education Policy Resolution in 1904 and the Governor General’s policy statement of 1913 stressing the importance of Technical Education, the establishment of I.I.Sc. in Bangalore, Institution for Sugar, Textile and Leather Technology in Kanpur, N.C.E. in Bengal in 1905 and Industrial schools in several provinces. Significant developments include:

- Constitution of the Technical Education Committee of the Central Advisory Board of Education (CABE) of 1943;

- Preparation of the Sergeant Report of 1944; and
Formation of the All India Council for Technical Education (AICTE) in 1945 by the Government of India.

The AICTE was set up in November 1945 based on the recommendations of CABE to stimulate, coordinate and control the provisions of educational facilities and industrial development of the post war period. At that time, the mandate of AICTE basically covered only programs in Engineering and Technology. The growth of industries in the country, just after independence, also demanded the need for qualified professionals in other fields, such as Business Management, Architecture, Hotel Management, and Pharmacy etc.

In 1954 the Government of India decided to set up a Board of Management Studies under AICTE to formulate standards and promote Management Education. Other major initiatives taken in Management Education include: setting up of the Administrative Staff College of India at Hyderabad in the late fifties, National Productivity Council and Indian Institution of Management in the early sixties. Architecture was covered under the Architects Act, 1972. Subsequently, for better coordination of the Professional Courses, Architecture Education was also placed under the purview of AICTE.

1.17 Growth of Technical Education

The growth of Technical Education before independence in the Country had been very slow. The number of Engineering Colleges and Polytechnics (including Pharmacy and Architecture Institutions) in 1947 was 44 and 43 respectively with an intake capacity of 3200 and 3400 respectively. Due to efforts and initiatives taken during successive Five Year Plans and particularly due to policy changes in the eighties to allow participation of Private and Voluntary
Organizations in the setting up of Technical Institutions on self-financing basis, the growth of Technical Education has been phenomenal.

1. 18 Indian Educational System

As shown in the Figure 1.1, India’s education system loosely follows the British model, and it is sometimes described as 10+2+3 (10 years’ schooling to matriculation at 16, two years’ preparation for university, three years’ undergraduate study). There is slight variation from state to state in the divisions between primary and upper primary, upper primary and secondary, secondary and higher/senior secondary. Year groups are traditionally called ‘Standard’, but ‘Class’ is also used. The US term ‘Grade’ is also heard, but more recent terminology introduced
in the English national curriculum (such as ‘Key Stage’) is not used. Figure 1.1 refers to ‘Class’ followed by an Arabic rather than Roman number.

1.19 Number of Technical Institutions in Tamilnadu (in Numbers)

<table>
<thead>
<tr>
<th>Type</th>
<th>Polytechnics</th>
<th>Engineering Colleges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2008-09</td>
<td>2009-10</td>
</tr>
<tr>
<td>Government</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Government Aided</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Affiliated Institutions</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Self-financing Institutions</td>
<td>258</td>
<td>307</td>
</tr>
<tr>
<td>Deemed Universities</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: Director of Technical Education, Chennai-25

Table. 1.0 is about the increase/establishment of new polytechnic and engineering colleges in Tamilnadu from the year 2008 to 2011. The years are divided into three quarters namely first, second and third. The first quarter refers to the academic year 2008 – 09, the second quarter refers to the academic year 2009 – 10 and the third quarter refers to the academic year 2010 – 11. The table highlights the extremities in the increase of government, government aided, affiliated institutions, self-financing and deemed universities.

In the first quarter and second quarter of 2008 – 09 and 2009 – 10, there were twenty two government polytechnics. During the same period, namely first and second there were six government engineering colleges and there was no significant change of numbers but in the third quarter 2010 – 11 there was an increase of eight government polytechnic colleges and no change
in the engineering. Similarly there was no change in the government aided polytechnic and government engineering colleges in all three quarters. Even the affiliated institution recorded a massive difference between polytechnics and engineering colleges. In all three quarters of 2008–11 the table remains same with three in affiliated institutions and nil in engineering colleges.

Not only that, even the increase of self-financing institutions, polytechnics and engineering colleges showed a very great increase in all three quarters. In the first quarter of 2008–09, there were two hundred and fifty eight polytechnics and it rose to three hundred and seven in 2009–10 and 365 in the 2010–11 showing an increase of forty nine polytechnics and one hundred and seven polytechnics in 2010–11 respectively. Similarly, there was an increase of engineering colleges, their figures being three hundred and thirty five, four hundred and thirty one and four hundred and sixty four respectively with an increase of ninety six and one hundred and twenty nine engineering colleges.

There was no deemed university status given to polytechnics colleges and at the same time there were eighteen deemed universities (Engineering stream) in the year 2008–09 and 2010–11 but in year 2009–10 the number has come down by two. This table proves that the engineering education is in great demand. Perhaps the growing popularity or grace for engineering jobs as well the career opportunity attracts the candidates.
1.19.1 ENGINEERING COLLEGES IN DISTRICTS 2009 – 11

TABLE. 1.1

<table>
<thead>
<tr>
<th>S. NO</th>
<th>DISTRICT</th>
<th>2009-10</th>
<th>2010-11</th>
<th>Top 5s (based on the Strength)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Chennai</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Kancheepuram</td>
<td>79</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>Thiruvallur</td>
<td>30</td>
<td>39</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>Cuddalore</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Villupuram</td>
<td>13</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Vellore</td>
<td>13</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Tiruvannamalai</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Salem</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Namakkal</td>
<td>31</td>
<td>32</td>
<td>4</td>
</tr>
<tr>
<td>10.</td>
<td>Dharmapuri</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Krishnagiri</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Erode</td>
<td>14</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Coimbatore</td>
<td>51</td>
<td>55</td>
<td>2</td>
</tr>
<tr>
<td>14.</td>
<td>Tiruppur</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>The Nilgiris</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Tiruchirappalli</td>
<td>23</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>17.</td>
<td>Karur</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Perambalur</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Ariyalur</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Thanjavur</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Pudukkottai</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Nagapattinam</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Thiruvarur</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
24. Madurai | 7 | 7
25. Theni | 3 | 4
26. Dindigul | 10 | 10
27. Ramanathapuram | 3 | 3
28. Virudhunagar | 9 | 9
29. Sivaganga | 7 | 8
30. Tirunelveli | 17 | 18
31. Thoothukkudi | 11 | 11
32. Kanniyakumari | 26 | 26

| Total | 431 | 464 |

Table 1.1 is about the strength of district-wise engineering colleges in Tamilnadu from the year 2009 to 2011. The top 5 districts have been highlighted in the table to show that students prefer to study in these districts when compared to other district. Next to Kancheepuram and Coimbatore is in the second place. This shows that Coimbatore is a hub of educational centers particularly of technical institutions. The researcher has chosen one of the colleges from this district which is situated on the border of Tamilnadu and Kerala.

1.19.2 Tamil Nadu Quota System & Available Engineering Seats

<table>
<thead>
<tr>
<th>S. No</th>
<th>College Type</th>
<th>% of Govt. Quota</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Govt. Engineering Colleges</td>
<td>100%</td>
</tr>
<tr>
<td>2.</td>
<td>Self-Finance or Private Engineering Colleges</td>
<td>65%</td>
</tr>
<tr>
<td>3.</td>
<td>Govt. Aided Engineering Colleges</td>
<td>90%</td>
</tr>
<tr>
<td>4.</td>
<td>Minority Colleges</td>
<td>50%</td>
</tr>
</tbody>
</table>
1.20 TNEA Merit list or Ranking

An overall State merit list is prepared based on the cut-off marks from HSE subjects of Mathematics, Physics and Chemistry to 200. In cases where more than one candidate gets the same cut-off marks in the common merit list, then the merit among such candidates shall be determined in the order of priority as specified below.

1.20.1 TNEA Ranking Priorities

- Community-wise Categorization
- Percentage of marks in Mathematics,
- Percentage of marks in Physics,
- Percentage of marks in the 4th optional subject,
- Date of Birth and
- Random number assigned (higher value will be given preference).

Therefore, in addition to Maths, Physics, Chemistry, the fourth optional subject mark of Biology or Computer Sciences is considered on bunching. In every 0.25 cut-off marks, there might be chances that so many students will get same cut-off marks. In that case, the inter-se merit among such candidates shall be determined in the order of priority.

1.20.2 Overall Ranking & Community Ranking

The students can have overall rank and community-wise ranking too. The student can opt colleges based on the community rank too. There is a separate community ranking available for BC, BCM, MBC, SC, SCA, ST community. The percentage of reservation various communities are given as per Govt. of Tamil Nadu reservation policies. The merit list is prepared on overall
ranking and community based ranking for all students who have applied for Tamil Nadu Engineering Admission.

1.21 Writing in Schools and College

In India, Schooling has a very specific purpose, aimed at entry into prestigious professional courses such as engineering or medicine, or into higher studies at the college or university level. The ultimate aim is for students to secure a successful career either in an established professional sphere or in an international firm. Every stage of schooling or career building is punctuated with a series of written examinations. Hence, it is the examination rather than the learner that becomes the focal point of Indian educational system. Despite the central importance given to written exams by teachers, students, parents and curriculum framers, very few students learn to write as expected in school. In fact, every successive failure in examination reinforces negative learner attitude towards writing and also a lack of self-confidence. The 2012 (Regulation 2008) Engineering Syllabi for Technical English I (TE I) and Technical English II (TE II) for 1st Year Engineering respectively, mentioned the following as Course’s Aim and Objectives under writing skills.

1.22 Teaching the English language in the Degree Courses

The first year engineering undergraduate curriculum for various engineering and architectural courses (BE/ B. Tech) includes the subject of Technical English I in the first semester and Technical English II for the second semester. The Anna University has designed and published the model curriculum for a first year undergraduate programme in engineering subjects in Tamilnadu. Table 3 and 4 give a brief outline of the course structure for the first semester, the first year undergraduate courses in engineering, wherein the subject of
communication skills is prescribed only in 3rd or 4th semester. Technical English I and II subjects are highlighted and communication skills is allotted with two theory hours and one tutorial hour per week.

TABLE 1.3
FIRST YEAR CURRICULUM FOR AN UNDERGRADUATE PROGRAMME (BE/B. TECH) - SEMESTER I

<table>
<thead>
<tr>
<th>S. No</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Technical English I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Engineering Mathematics I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>Engineering Physics I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>Engineering Chemistry I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>Engineering Graphics</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6.</td>
<td>Fundamentals of Computing and Computer Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>Computer Practical Laboratory- I (Practical)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>Engineering Practices Laboratory(Practical)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>Physics and Chemistry Laboratory (Practical)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

L – Lecture T – Theory P – Practical C – Total Hours
TABLE 1.4

FIRST YEAR CURRICULUM FOR AN UNDERGRADUATE PROGRAMME (BE/B. TECH) - SEMESTER II

<table>
<thead>
<tr>
<th>S. NO</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Technical English II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Engineering Mathematics II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>Engineering Physics II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>Engineering Chemistry II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>Engineering Mechanics (For non-circuit branches)</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>Circuit Theory (for branches under Electrical Faulty)</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>Electric Circuits and Electron Devices (for branches under I and C Faculty)</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>Basic Electrical and Electronics Engineering (for non-circuit branches)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>Basic Civil and Mechanical Engineering (for circuit branches)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>10.</td>
<td>Computer Practice Laboratory II</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>11.</td>
<td>Physics and Chemistry Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>12.</td>
<td>Computer Aided Drafting and Modeling Laboratory (for non-circuit branches)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>13.</td>
<td>Electrical Circuits Laboratory (for branches under Electrical Faculty)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>14.</td>
<td>Circuits and Devices Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

L – Lecture T – Theory P – Practical C – Total Hours
1.22.1 Course Description

To encourage students to actively involve in participative learning of English and to help them acquire Communication Skills.

1.22.2 Learning Objectives of Technical English I and II

- To help students develop listening skills for academic and professional purposes.
- To help students acquire the ability to speak effectively in English in real-life situations.
- To inculcate reading habit and to develop effective reading skills.
- To help students improve their active and passive vocabulary.
- To familiarize students with different rhetorical functions of scientific English.

1.23 Problems encounter in writing academic texts

Academic writing is acquired in formal settings in schools and colleges right from the very beginning of formal education. However, very often teachers fail to draw learners attention to basic features like sentence-structures, organisational details for the whole text and the importance of choosing genre-specific words. While speech or basic oral fluency in a language can be acquired without a lot of formal instruction in writing, learners have to pay special attention to the choice of words and the way ideas are arranged and for this they need to gain an understanding of features like grammaticality, correctness of tone, style, format and proper organization of academic texts. All these involve a deep understanding of higher order organisation-based cognitive processes, social understanding and expectations from a text-type and linguistic-pragmatic conventions of the texts. Learners need to encounter examples of each
genre of academic texts and get exposed to a higher order of abstraction before they can start producing independent texts.

In a study done by John (1997), a famous linguist where he had interviewed the faculty, it was found that learners were unable to recognize and use conventions and features of academic writing correctly. Further, they produced essays where the language was vague and confusing, read like personal experiences, and were rhetorically unstructured. They had problems with sentence-level features like appropriate uses of hedging, modal verbs, pronouns, active and passive voice, balance generalisation and even exemplification.

1. 24 The National Employability Report 2011

A Survey was conducted on a test taken by 55,000 students in colleges across the country. The survey included students from government engineering colleges and self financed engineering institutions, many from Chennai, and the rest from colleges across the State. The following states are as follows:

- Bihar and Jharkhand
- Gujarat
- Uttarakhand
- West Bengal
- Madhya Pradesh
- Uttar Pradesh
- Delhi
- Punjab
The study was to evaluate the aptitude, technical skills and communication skills of final year engineering students. The Report says that only 17.45 per cent of the engineers roped in by the IT sector are employable nationally.

1.25 Engineering graduates grapple with English

After the State abolished the Tamil Nadu Professional Courses Entrance Examination in 2007 and offered incentives for first generation undergraduate students, more Tamil medium students started joining engineering colleges. Nearly half of the students enrolled in engineering colleges in the State hailed from rural areas and completed their school education in Tamil medium.

The following are the key issues/problems faced by the teachers of English:

- More than 25% engineers do not possess English comprehension skills required to understand engineering school curriculum
• Only 57% engineers can write grammatically correct sentences in English.
• Less than 48% engineers understand moderately sophisticated words of English.
• More than half of all engineers (52%) are not fluent with a majority of words that are used with regular frequency at the workplace.
• Around 50% engineers possess grammar skills that are not better than a Class VII student

(Aspiring Minds Report 2010)

1.26 Summary

In this chapter, the issues and importance of writing skills of the engineering students have been discussed. In the next chapter, the review of literature and theory will be discussed.