CHAPTER-II

ON MODIFICATIONS OF GTS VIA HEREDITARY CLASSES

In this chapter, we discuss the properties of hereditary classes, characterize \(\mu \)– codense hereditary classes and generalize some of the results established in [44].

The following Theorem 2.1 gives a characterization of \(\mu \)– codense hereditary classes.

Theorem 2.1. If \((X, \mu)\) is a GTS with a hereditary class \(\mathcal{H} \), then \(\mathcal{H} \) is \(\mu \)– codense if and only if \(i_{\mu}(I) = \emptyset \) for every \(I \in \mathcal{H} \).

Proof. Suppose \(\mathcal{H} \) is \(\mu \)– codense. If \(I \in \mathcal{H} \), then \(i_{\mu}(I) \in \mu \cap \mathcal{H} \) and so \(i_{\mu}(I) = \emptyset \). Conversely, suppose the condition holds. If \(A \in \mu \cap \mathcal{H} \), then \(A \in \mathcal{H} \) and so \(i_{\mu}(A) = \emptyset \) which implies that \(A = \emptyset \). Therefore, \(\mathcal{H} \) is \(\mu \)– codense.

Corollary 2.2. If \((X, \mu)\) is a GTS with a hereditary class \(\mathcal{H} \), then \(\mathcal{H}_\mu \) is \(\mu \)– codense.

Theorem 2.3. If \((X, \mu)\) is a GTS with a hereditary class \(\mathcal{H} \) and \(A \in \mathcal{H} \), then \(i_{\mu}(A^*) = \emptyset \) and so \(c_{\mu}(X - A^*) = X \) for every \(A \in \mathcal{H} \).

Proof. Since \(A \in \mathcal{H} \), by Lemma 1.18(a), \(A^* = X - M_\mu \) where \(M_\mu = \cup \{ M \mid M \in \mu \} \). Since \(M_\mu \) is the largest \(\mu \)– open subset of \(X \), it follows that \(i_{\mu}(A^*) = \emptyset \) and so \(c_{\mu}(X - A^*) = X \), since \(c_{\mu}(X - B) = X - i_{\mu}(B) \) for every subset \(B \) of \(X \) [39].

In Lemma 1.18(i), it is established that if \(\mu \) is a topology on \(X \), then every \(\mu \)– codense hereditary class is a strongly \(\mu \)– codense hereditary class. The following
Theorem 2.4 shows that the above result is true for a quasi topology μ. Theorem 2.5 below give characterizations of strongly μ-codense hereditary classes.

Theorem 2.4. If (X,μ) is a quasi topological space with a hereditary class \mathcal{H}, then the following statements are equivalent.

(a) \mathcal{H} is μ-codense.

(b) \mathcal{H} is strongly μ-codense.

Proof. $(a) \Rightarrow (b)$. Suppose $M,N \in \mu$ and $M \cap N \in \mathcal{H}$. By Lemma 1.15(a), it follows that $M \cap N \in \mu$ and so $M \cap N \in \mu \cap \mathcal{H}$. Since \mathcal{H} is μ-codense, $M \cap N = \emptyset$ and so \mathcal{H} is strongly μ-codense.

$(b) \Rightarrow (a)$ follows from the definition of strongly μ-codense hereditary class.

Theorem 2.5. If (X,μ) is a quasi topological space with a hereditary class \mathcal{H}, then the following statements are equivalent.

(a) \mathcal{H} is strongly μ-codense.

(b) $M \subset M^*$ for every $M \in \mu$.

(c) $S \subset S^*$ for every $S \in \sigma$.

(d) $c_\mu(M) = M^*$ for every $M \in \mu$.

(e) $c_\mu(M) = M^*$ for every $M \in \sigma$.

(f) $i_\mu(A) \subset i_\mu(A^*)$ for every subset A of X.

(g) $i_\sigma(A) \subset i_\sigma(A^*)$ for every subset A of X.

(h) $c_\sigma(A) \subset A^*$ for every $A \in \sigma$.

Proof. (a) and (b) are equivalent by Lemma 1.18(b).
(b) ⇒ (c). Suppose $M \subseteq M^*$ for every $M \in \mu$. Let $S \in \sigma$. Then there exists a μ-open set M such that $M \subseteq S \subseteq c_\mu(M)$ [111]. Now $S \subseteq c_\mu(M) = M^*$, by Lemma 1.18(c) and so $S \subseteq M^* \subset S^*$, by Lemma 1.18(d), which proves (c).

(c) implies (b) follows from the fact that $\mu \subset \sigma$.

(c) and (e) are equivalent by Lemma 1.18(c).

(b) and (d) are equivalent by Lemma 1.18(c).

(c) ⇒ (g). For subset A of X, $i_\sigma(A) \in \sigma$ and so $i_\sigma(A) \subset (i_\sigma(A))^* \subset A^*$ and so $i_\sigma(A) \subset i_\sigma(A^*)$, since $i_\sigma \in \Gamma_2$.

(g) ⇒ (c). If $A \in \sigma$, then $A = i_\sigma(A) \subset i_\sigma(A^*) \subset A^*$.

(b) ⇒ (f). For subset A of X, $i_\mu(A) \in \mu$ and so $i_\mu(A) \subset (i_\mu(A))^* \subset A^*$ and so $i_\mu(A) \subset i_\mu(A^*)$.

(f) ⇒ (b). If $A \in \mu$, then $A = i_\mu(A) \subset i_\mu(A^*) \subset A^*$.

(h) follows from (e), since $\mu \subset \sigma$.

(h) ⇒ (c). Since $A \subset c_\sigma(A) \subset A^*$, (c) follows from (h).

In Lemma 1.18(j), it is established that if μ is a topological space on X and \mathcal{H} is a hereditary class, then $M \cap A^* \subset (M \cap A)^*$ for every $M \in \mu$ and $A \subseteq X$.

The following Theorem 2.6 shows that the above result is true in a quasi topological space.

Theorem 2.6. If (X, μ) is a quasi topological space with a hereditary class \mathcal{H}, then $M \cap A^* \subset (M \cap A)^*$ for every $M \in \mu$ and $A \subseteq X$.

Proof. Suppose $x \notin (M \cap A)^*$. Then there exists $N \in \mu$ containing x such that
N \cap (M \cap A) \in \mathcal{H}. If \(x \notin M \), then \(x \notin M \cap A^* \). If \(x \in M \), then \(x \in M \cap N \) and \(M \cap N \in \mu \) by Lemma 1.15(a). Therefore, \(N \cap (M \cap A) \in \mathcal{H} \) implies that \(x \notin A^* \) and so \(x \notin M \cap A^* \). Hence \(M \cup A^* \in (M \cap A)^* \) for every \(M \in \mu \) and \(A \subset X \).

The following Lemma 2.7 shows that \(\mathcal{H}_\mu \) is an ideal in a quasi topological space. In Lemma 1.22, it is established that for the hereditary class \(\mathcal{H}_\mu \), \(A^* \subset c_\mu i_\mu c_\mu(A) \) for every subset \(A \) of \(X \). The following Theorem 2.8 shows that, in a quasi topological space, equality holds in the above relation and \(\mathcal{H}_\mu \) is strongly \(\mu \)-codense.

Lemma 2.7. If \((X, \mu)\) is a quasi topological space with a hereditary class \(\mathcal{H} \), then \(\mathcal{H}_\mu \) is an ideal.

Proof. If \(A \) and \(B \in \mathcal{H}_\mu \), then \(i_\mu(c_\mu(A \cup B)) = i_\mu(c_\mu(A) \cup c_\mu(B)) \), by Lemma 1.15(c) and so \(i_\mu(c_\mu(A \cup B)) \subset i_\mu(c_\mu(A)) \cup c_\mu(B) = \emptyset \cup c_\mu(B) \), by Lemma 1.19(b). Therefore, \(i_\mu(c_\mu(A \cup B)) \subset i_\mu(c_\mu(B)) = \emptyset \) and so \(A \cup B \in \mathcal{H}_\mu \). Hence \(\mathcal{H}_\mu \) is an ideal.

Theorem 2.8. If \((X, \mu)\) is a quasi topological space with a hereditary class \(\mathcal{H}_\mu \), then the following hold.

(a) \(A^* = c_\mu i_\mu c_\mu(A) \) for every subset \(A \) of \(X \).

(b) \(X = X^* \) and hence \(\mathcal{H}_\mu \) is strongly \(\mu \)-codense.

(c) \(\mu^* = \{ A \mid A \subset i_\mu c_\mu i_\mu(A) \} = \alpha_\mu \).

Proof. If \(A \subset X \), then \(A^* \subset c_\mu i_\mu c_\mu(A) \) by Lemma 1.22. Let \(x \notin A^* \). Then there exists a \(\mu \)-open set \(M \) containing \(x \) such that \(M \cap A \in \mathcal{H}_\mu \), and so \(i_\mu c_\mu(M \cap \)
A) = \emptyset. By Lemma 1.19(a), \(M \cap c_\mu(A) \subset c_\mu(M \cap A) \) and so \(i_\mu c_\mu(M \cap c_\mu(A) \subset i_\mu c_\mu(M \cap A) = \emptyset \). Therefore, \(i_\mu c_\mu(M \cap c_\mu(A)) = \emptyset \). If \(y \in M \cap i_\mu c_\mu(A) \), then \(y \in M \) and \(y \in i_\mu c_\mu(A) \). Therefore, there exists a \(\mu \)-open set \(V \) containing \(y \) such that \(V \subset c_\mu(A) \) and so \(y \in M \cap V \subset M \cap c_\mu(A) \subset c_\mu(M \cap c_\mu(A)) \) which implies that \(y \in i_\mu c_\mu(M \cap c_\mu(A)) \), a contradiction to the fact that \(i_\mu c_\mu(M \cap c_\mu(A)) = \emptyset \). Therefore, \(M \cap i_\mu c_\mu(A) = \emptyset \) which implies that \(x \notin c_\mu i_\mu c_\mu(A) \). Hence \(A^* = c_\mu i_\mu c_\mu(A) \) for every subset \(A \) of \(X \).

(b) Now \(X^* = c_\mu i_\mu c_\mu(X) = c_\mu i_\mu(X) \), since \(c_\mu(X) = X \). Since \(i_\mu(X) = M_\mu \), it follows that \(c_\mu i_\mu(X) = X \). Therefore \(X = X^* \). By Lemma 1.18(e), \(H_\mu \) is \(\mu \)-codense. By Theorem 2.4, \(H_\mu \) is strongly \(\mu \)-codense.

(c) \(\mu^* = \{ A \subset X \mid c^*(X - A) = X - A \} = \{ A \subset X \mid (X - A)^* \subset X - A \} = \{ A \subset X \mid c_\mu i_\mu c_\mu(X - A) \subset X - A \} = \{ A \subset X \mid A \subset i_\mu c_\mu i_\mu(A) \} = \alpha_\mu \).

Lemma 1.24 characterizes the subsets \(A \) of \(X \) satisfying the condition \(A \subset A^* \) in which the condition (c) is redundant by Lemma 1.23. The following Theorem 2.9 gives more characterizations of such sets in a quasi topological space.

Theorem 2.9. If \((X, \mu) \) is a quasi topological space with a hereditary class \(H \), then the following following statements are equivalent.

(a) \(A \subset A^* \).

(b) \(A = D \cap A^* \) for some \(\mu \)-dense set \(D \).

(c) \(A = B \cap A^* \) for some \(\beta \)-open set \(B \).

(d) \(A = G \cap A^* \) for some \(b \)-open set \(G \).
Proof. (a) ⇒ (b). Let $D = A \cup (X - A^*)$. Then $D \cap A^* = (A \cup (X - A^*)) \cap A^* = A$. Also $c_\mu(D) = c_\mu(A \cup (X - A^*)) = c_\mu(A) \cup c_\mu(X - A^*)$, by Lemma 1.15(c) and so $c_\mu(D) = c_\mu(A) \cup (X - i_\mu(A^*)) = c_\mu(A) \cup (X - i_\mu c_\mu(A))$, by Lemma 1.18(c). Therefore, $c_\mu(D) \supset c_\mu(A) \cup (X - c_\mu(A)) = X$ and so D is $\mu -$ dense.

(b) ⇒ (c). We prove that every $\mu -$ dense set is a $\beta -$ open set. If D is $\mu -$ dense, then $c_\mu(i_\mu c_\mu(D)) = c_\mu(i_\mu c_\mu(X)) = c_\mu(M_\mu) = X$ and so D is a $\beta -$ open set.

(c) implies (d) and (d) implies (a) are clear.

In Lemma 1.25, it is established that if \mathcal{H} is strongly $\mu -$ codense, then $\delta \subset \delta_\mathcal{H}$. Since the concepts strongly $\mu -$ codense and $\mu -$ codense are equivalent in quasi topological spaces, by Theorem 2.4, we have the following Theorem 2.10. Theorem 2.11 below shows that the converse is true, if $\mathcal{H} \subset \mathcal{H}_\mu$. Also, it shows that Lemma 1.26 is true for quasi topological space.

Theorem 2.10. If (X, μ) is a quasi topological space with a hereditary class \mathcal{H} and \mathcal{H} is $\mu -$ codense, then $\delta \subset \delta_\mathcal{H}$.

Theorem 2.11. If (X, μ) is a quasi topological space with a hereditary class \mathcal{H} and $\mathcal{H} \subset \mathcal{H}_\mu$, then $\delta_\mathcal{H} \subset \delta$.

Proof. Suppose $A \in \delta_\mathcal{H}$. Then $i_\mu c_\mu^*(A) \subset c_\mu^* i_\mu(A)$. Since $\mathcal{H} \subset \mathcal{H}_\mu$, and \mathcal{H}_μ is $\mu -$ codense by Theorem 2.8(b), it is easy to verify that \mathcal{H} is a $\mu -$ codense. clearly, $A^*(\mathcal{H}_\mu) \subset A^*(\mathcal{H})$. $A^*(\mathcal{H}_\mu) \subset A^*(\mathcal{H}) \Rightarrow c_\mu i_\mu c_\mu(A) \subset A^*(\mathcal{H}) \Rightarrow i_\mu c_\mu i_\mu c_\mu(A) \subset i_\mu(A^*) \Rightarrow i_\mu c_\mu(A) \subset i_\mu(A^*) \subset i_\mu c_\mu(A) \subset c_\mu^* i_\mu(A)$. By Theorem 2.4, \mathcal{H} is strongly $\mu -$ codense. By Theorem 2.5(d), $c_\mu^* i_\mu(A) = (i_\mu(A))^*$. By Theorem 2.5(b), $i_\mu(A) \subset
\[(i_\mu(A))^* \text{ and so } (i_\mu(A))^* = c_\mu(i_\mu(A)). \text{ Therefore } i_\mu c_\mu(A) \subset c_\mu i_\mu(A) \text{ and so } A \in \delta.\]

In Lemma 1.27, it is established that if \(\mu \) is a topology on \(X \), \(\mathcal{H} \) is a hereditary class and \(A \in \delta_\mathcal{H} \), then \(i_\mu(A^*) \subset (i_\mu(A))^* \). The following Theorem 2.12 shows that the above result is true in quasi topological spaces.

Theorem 2.12. If \((X, \mu) \) is a quasi topological space with a hereditary class \(\mathcal{H} \) and \(A \in \delta_\mathcal{H} \), then \(i_\mu(A^*) \subset (i_\mu(A))^* \).

Proof. If \(A \in \delta_\mathcal{H} \), then \(i_\mu c_\mu^*(A) \subset c_\mu^* i_\mu(A) \). Now \(i_\mu(A^*) \subset i_\mu c_\mu^*(A) \subset c_\mu^* i_\mu(A) = c_\mu(i_\mu(A)) \cup (i_\mu(A))^* \). Suppose \(x \in i_\mu(A^*) \). Then \(x \in i_\mu(A) \cup (i_\mu(A))^* \). Since \(x \in i_\mu(A^*) \), there exists a \(\mu \)-open set \(G \) containing \(x \) such that \(G \subset A^* \). If \(x \notin (i_\mu(A))^* \), then there exists a \(\mu \)-open set \(H \) containing \(x \) such that \(H \cap i_\mu(A) \in \mathcal{H} \). Now \(H \cap i_\mu(A) = H \cap (i_\mu(A) \cap A) = (H \cap i_\mu(A)) \cap A \in \mathcal{H} \). By Lemma 1.18(f), \(H \cap i_\mu(A) \cap A^* = \emptyset \). Since \(G \subset A^* \), \(H \cap i_\mu(A) \cap G = \emptyset \) which implies that \((H \cap G) \cap i_\mu(A) = \emptyset \) and so \(x \notin i_\mu(A) \) which is a contradiction to the fact \(x \in i_\mu(A) \cup (i_\mu(A))^* \). Therefore \(x \in (i_\mu(A))^* \) and so \(i_\mu(A^*) \subset (i_\mu(A))^* \).

The following Theorem 2.13 shows that the converse of Theorem 2.12 is true if \(\mathcal{H} \) is \(\mu \)-codense. Also, it shows that Lemma 1.28, is true for a quasi topological space.

Theorem 2.13. If \((X, \mu) \) is a quasi topological space, \(\mathcal{H} \) is \(\mu \)-codense hereditary class and \(i_\mu(A^*) \subset (i_\mu(A))^* \), then \(A \in \delta_\mathcal{H} \).

Proof. Since \(A^* \) is \(\mu \)-closed, by Lemma 1.18(g), \(i_\mu c_\mu^*(A) = i_\mu(A \cup A^*) \subset \emptyset \). Therefore \(i_\mu(A^*) \subset (i_\mu(A))^* \) and so \(A \in \delta_\mathcal{H} \).
\(i_\mu(A) \cup A^* \), by Lemma 1.19(b). Since \(\mathcal{H} \) is \(\mu \)-codense, by Theorem 2.4 and 2.5(b), \(i_\mu(A) \subset (i_\mu(A))^* \). Now \(i_\mu c_\mu^*(A) = (i_\mu(A))^* \cup A^* \subset (i_\mu(A) \cup A)^* = A^* \) by Lemma 1.18(d) and so \(i_\mu c_\mu^*(A) \subset i_\mu(A^*) \subset (i_\mu(A))^* \subset i_\mu(A) \cup (i_\mu(A))^* = c_\mu^* i_\mu(A) \).

Therefore, \(A \in \delta_{\mathcal{H}} \).

Corollary 2.14. If \((X, \mu)\) is a quasi topological space, \(\mathcal{H} \) is a \(\mu \)-codense hereditary class of subsets of \(X \) and \(A \subset X \), then \(A \in \delta_{\mathcal{H}} \) if and only if \(i_\mu(A^*) \subset (i_\mu(A))^* \).

Proof. The proof follows from Theorems 2.12 and 2.13.