Chapter 2

Global Transversals sets and Global Transversal Irredundant sets

This chapter is devoted to a study of the new graph invariant namely global transversal number.

2.1 Introduction

In the study of transversals, usually the complement of the graph is not considered. A transversal with a particular property may not be a transversal in that property for the complement. This motivated us to study transversals which are clique transversals in G and \overline{G}. Such transversals are called global transversals. The property of being a global transversal is a super-hereditary property. The condition for minimality led to the definition of global transver-
2.2 Definition and properties of Global Transversal sets

Definition 2.2.1 A clique in a graph is a maximal induced subgraph of the graph and a maximum clique is a clique of maximum cardinality.

Definition 2.2.2 A Transversal which meets all maximum cliques as well as maximum independent sets is called a global transversal set of G. The minimum cardinality of global transversal set of G is called the global transversal number of G and it is denoted by $\tau_g(G)$.

Note 2.2.3 $V(G)$ is always a global transversal set.

2.2.1 $\tau_g(G)$ for Standard Graphs

In the following, we obtain $\tau_g(G)$ for standard graphs.

1. $\tau_g(K_n) = n, \forall n.$
2. $\tau_g(K_n) = 1, \forall n.$
3. $\tau_g(C_n) = \lceil \frac{n}{2} \rceil + 1.$
4. $\tau_g(P_n) = \lceil \frac{n}{2} \rceil$.

5. $\tau_g(W_{n+1}) = \lceil \frac{n}{2} \rceil + 1$.

6. $\tau_g(D_{r,s}) = 3, r, s \geq 2$.

Proposition 2.2.4 $\tau_g(K_{1,n}) = 2 \forall n \geq 2$.

Proof Let $V(K_{1,n}) = \{u, v_1, v_2, ..., v_n\}$ where u is the centre. Then $\{u, v_1\}$ is a global transversal and clearly a single vertex cannot constitute a global transversal. Hence $\tau_g(K_{1,n}) = 2, \forall n \geq 2$.

Proposition 2.2.5 $\tau_g(K_{m,n}) = \min\{m, n\} + 1$.

Proof Let $m, n \geq 2$. Since $K_{m,n}$ cannot contain any complete subgraph of order ≥ 3, $\omega(K_{m,n}) = 2$. Any clique joins a vertex of one bipartite set with a vertex of another bipartite set. Maximum independent set of $K_{m,n}$ is unique if $m \neq n$ and both partite sets are maximum independent sets if $m = n$. Hence $\tau_g(K_{m,n}) = \min\{m, n\} + 1$.

Illustration 2.2.6

To illustrate this, consider the two graphs $K_{2,4}, K_{4,4}$ given in Figure 1, Figure 2.
\[\tau_g(K_{2,4}) = \min\{2, 4\} + 1 = 2 + 1 = 3. \]
\(\{u_1, u_2, v_1\} \) is a minimum global transversal set. Thus \(\tau_g(K_{2,4}) = 3. \)

\[\tau_g(K_{4,4}) = \min\{4, 4\} + 1 = 4 + 1 = 5. \]
\(\{u_1, u_2, u_3, u_4, v_1\} \) is a minimum global transversal set.
Thus $\tau_g(K_{4,4}) = 5$.

Theorem 2.2.7 For any bipartite graph $G, \tau_g(G) = \alpha_0(G) + 1$.

Proof
Let S be a α_0-set of G. Then $V - S$ is a β_0-set of G. Let $u \in V - S.S \cup \{u\}$ meets all β_0 sets as well as all cliques of G. Therefore $\tau_g(G) \leq \alpha_0(G) + 1$. Let S_1 be a τ_g-set of G. Suppose $|S_1| < \alpha_0(G) + 1$. If $V - S_1$ is independent, then $|V - S_1| > n - (\alpha_0(G) + 1) = \beta_0(G) + 1$, a contradiction. Therefore $V - S_1$ is not independent. Therefore $V - S_1$ contains a K_2. Since G is bipartite, $\omega(G) = 2$. Therefore S_1 does not meet a maximum clique in $V - S_1$, a contradiction. Therefore $\tau_g(G) = \alpha_0(G) + 1$.

Corollary 2.2.8 For any Tree T, $\tau_g(T) = \alpha_0(T) + 1$.

Remark 2.2.9

The above property is not true for graphs which are not bipartite. To illustrate this consider the following graph G in figure 3.
Figure 3

\{1,2\},\{1,4\} are \(\tau_g\)-sets of \(G\). \(\alpha_0(G) = 2\). Therefore \(\tau_g(G) < \alpha_0(G) + 1\).

Remark 2.2.10 There are graphs which are not bipartite in which \(\tau_g(G) = \alpha_0(G) + 1\) holds.

Consider \(C_n\), \(n\) odd. \(\tau_g(C_n) = \lceil \frac{n}{2} \rceil + 1\),
\(\alpha_0(C_n) = \lceil \frac{n}{2} \rceil\),
\(\tau_g(C_n) = \alpha_0(C_n) + 1\).

Remark 2.2.11 For any graph \(G\), \(\tau_g(G) \leq \alpha_0(G) + 1\). (Since any vertex cover \(C\) together with a vertex from \(V - C\) is a global transversal of \(G\)).

Observation 2.2.12 If \(G\) is any graph, \(\tau_g(G.K_1) = |V(G)|+1 = \alpha_0(G.K_1) + 1\).
Observation 2.2.13

Given a graph G, there are induced subgraphs S whose τ_g may be equal to greater or less than that of G.

For:

Let G:

The β_0 sets are $\{v_1, v_6, v_3, v_5\}, \{v_1, v_7, v_3, v_5\}$. The only clique is $\{v_2, v_6, v_7\}$. $\{v_1, v_2\}$ is a τ_g set of G. Therefore $\tau_g(G) = 2$.

Let H:

$\tau_g(H) = 3 > \tau_g(G)$,

Let H_1:
τ_g(H_1) = 1 < τ_g(G).

Let H_2

\[\tau_g(H_2) = 2 = \tau_g(G). \]

Observation 2.2.14 Let T be a global transversal set of G. Then any super set of T is also global transversal set of G.

Definition 2.2.15 T is called a minimal global transversal set of G if no proper subset of T is a global transversal set of G. Since global transversal property is super hereditary, a global transversal set is minimal if and only if it is 1-minimal. The minimum cardinality of a minimal global transversal
set of G is the global transversal number of G and is denoted by $\tau_g(G)$ and the maximum cardinality of a minimal global transversal set of G is called the upper global transversal number of G and is denoted by $\tau_G(G)$.

Example 2.2.16

Consider the graph G given in figure 4.

The maximum independent sets of the graph G are

\{
v_1, v_8, v_{10}, v_4, v_6\}, \{v_1, v_8, v_{10}, v_5, v_7\}, \{v_1, v_8, v_{10}, v_4, v_7\}, \{v_1, v_8, v_{11}, v_4, v_6\}, \{v_1, v_9, v_{10}, v_4, v_7\}, \\
\{v_1, v_9, v_{11}, v_4, v_7\}, \{v_1, v_9, v_{11}, v_4, v_6\}, \{v_1, v_9, v_{11}, v_5, v_7\}.

Clique of G are $\{v_2, v_8, v_9\}$, and $\{v_{11}, v_{10}\}$.
The minimal global transversal sets of G are
\[
\{v_1, v_2, v_3\}, \{v_2, v_3, v_4, v_5\}, \{v_2, v_3, v_4, v_6\}, \\
\{v_2, v_3, v_5, v_7\}, \{v_2, v_3, v_4, v_6\}, \\
\{v_2, v_3, v_4, v_6\}, \{v_2, v_3, v_4, v_6\}, \\
\{v_2, v_3, v_4, v_6\}, \{v_2, v_3, v_4, v_6\}, \\
\{v_2, v_3, v_4, v_6\}, \{v_2, v_3, v_4, v_6\},
\]
Therefore $\tau_g(G) = 3$, $\tau_G(G) = 4$.

Example 2.2.17

![Graph Image]

The unique maximum independent set of the above given graph is $\{v_1, v_2, v_3, v_6, v_7, v_8, v_9\}$.

Clique are $\{v_4, v_1\}, \{v_4, v_2\}, \{v_4, v_3\}, \{v_4, v_5\}, \{v_5, v_9\}, \{v_5, v_7\}, \{v_5, v_8\}, \{v_5, v_9\}$.

The minimal global transversal sets are $\{v_1, v_4, v_5\}, \{v_6, v_7, v_8, v_9, v_4\}$ and $\{v_1, v_2, v_3, v_5\}$.

Therefore $\tau_g(G) = 3$, $\tau_G(G) = 5$.

Remark 2.2.18 Given any positive integer k, there exists a graph G such
that $\tau_G(G) - \tau_g(G) = k$.

Proof Consider $D_{r,s}$ where $s = k + 2$ and $r \leq s, \tau_g(D_{r,s}) = 3$ and $\tau_G(D_{r,s}) = k + 3$. Therefore $\tau_G(D_{r,s}) - \tau_g(D_{r,s}) = k$.

Theorem 2.2.19 Let T be a global transversal set of G. Then T is minimal if and only if for every $u \in T$, either there exists a maximum independent set S such that $S \cap T = \{u\}$ or there exists a maximum clique C such that $C \cap T = \{u\}$.

Proof Obvious. \hfill \blacksquare

Theorem 2.2.20 Let G and \overline{G} have no isolates. Then any global transversal set T is a dominating set for G as well as \overline{G}. That is, T is a global dominating set of G.

Proof
Let T be a global transversal set of G. Let $u \in V - T$. Then u is a vertex belonging to a clique say C of G (Since u is not an isolate). Therefore $T \cap C \neq \emptyset$. Let $v \in T \cap C$. Since $v \in C$, u and v are adjacent. Therefore T is a dominating set of G. Since T is a clique transversal set for \overline{G}, T is also a dominating set of \overline{G}. Therefore T is a global dominating set of G. \hfill \blacksquare
Corollary 2.2.21 \(\gamma_g(G) \leq \tau_G(G) \)

2.3 Private maximum independant set neighbour and private maximum clique neighbour

Definition 2.3.1 Let \(u \in V(G) \)

(i) The maximum independent set neighbourhood of \(u \) in \(G \) is defined as \(\{ S \subseteq V(G) : S \text{ is a maximum independent set of } G \text{ and } u \in S \} \). This is denoted by \(N_{\beta}(u) \).

(ii) The maximum clique neighbourhood of \(u \) in \(G \) is defined as \(\{ C \subseteq V(G) : C \text{ is a maximum clique and } u \in C \} \). This is denoted by \(N_c(u) \).

Definition 2.3.2 Let \(T \) be a global transversal set of \(G \). Let \(u \in T \). Let \(S \) be a maximum independant set of \(G \). \(S \) is said to be a private maximum independent neighbour of \(u \) with respect to \(T \) if \(S \in N_{\beta}(u) \) and \(S \notin N_{\beta}(v) \) for any \(v \neq u, v \in T \). The set of all private maximum independent set neighbours of \(u \) is denoted by \(pn_{\beta}(u, T) \).

Definition 2.3.3 Let \(T \) be a global transversal set of \(G \). Let \(u \in T \). Let \(C \) be a maximum clique of \(G \). \(C \) is said to be a private maximum clique neighbour
of u with respect to T if $C \in N_c(u)$ and $C \notin N_c(v)$ for all $v \neq u$, $v \in T$. The set of all private maximum clique neighbours of u is denoted by $p\text{nc}(u, T)$

Remark 2.3.4 Let T be a global transversal set of G. T is minimal if and only if for any $u \in T$, $p\text{b}0(u, T) \neq \phi$ or $p\text{nc}(u, T) \neq \phi$.

2.4 Definition and properties of global transversal irredundant sets

Definition 2.4.1 Let T be a non empty subset of $V(G)$ satisfying the following:

For all $u \in T$, $p\text{b}0(u, T) \neq \emptyset$ or $p\text{nc}(u, T) \neq \emptyset$. Then T is called a global transversal irredundant set (in short g.t irredundant set) of G.

Observation 2.4.2 If T is a g.t irredundant set of G, then any subset of T is also a g.t irredundant set of G. That is, g.t irredundance is a hereditary property.

Proof

Let T be a g.t irredundant set of G. Let $S \subseteq T$. Let $u \in S$. Therefore $u \in T$. Therefore $p\text{b}0(u, T) \neq \phi$ or $p\text{nc}(u, T) \neq \phi$. That is there exists a maximum
independent set A of G such that $A \cap T = \{u\}$ or there exists a maximum clique C of G such that $T \cap C = \{u\}$. Therefore $A \cap S = \{u\}$ or $C \cap S = \{u\}$. Therefore $pn_{g,t}(u, S) \neq \phi$ or $pn_c(u, S) \neq \phi$. Therefore S is a $g.t$ irredundant set of G.

Definition 2.4.3 The minimum (maximum) cardinality of a maximal $g.t$ irredundant set of a graph G is called (upper) $g.t$ irredundance number of G and is denoted by $ir_{g,t}(G)(IR_{g,t}(G))$.

Example 2.4.4

(i) $ir_{g,t}(K_n) = IR_{g,t}(K_n) = n$.

(ii) $ir_{g,t}(P_{2n}) = n$, $IR_{g,t}(P_{2n}) = n + 1$.

(iii) $ir_{g,t}(P_{2n+1}) = n$, $IR_{g,t}(P_{2n+1}) = n + 1$, $n \geq 1$.

Illustration 2.4.5
The maximum independent sets of C_6 are $\{v_1, v_3, v_5\}, \{v_2, v_4, v_6\}$.

Cliques of C_6 are , $\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_4, v_5\}, \{v_5, v_6\}, \{v_6, v_1\}$.

$\{v_1, v_2, v_4, v_5\}, \{v_1, v_2, v_3, v_5\}, \{v_2, v_3, v_4, v_6\}, \{v_1, v_3, v_4, v_5\}$ are maximal g.t irredundant sets. $\{v_2, v_4, v_5, v_6\}, \{v_5, v_6, v_1, v_3\}, \{v_6, v_1, v_2, v_4\}$ are also maximal g.t irredundant sets.

For: Consider $S = \{v_1, v_2, v_4, v_5\}$. Clearly S is a g.t irredundant set of C_6. Consider $\{v_1, v_2, v_3, v_4, v_5\}$. v_2 belongs to $\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4, v_6\}$ and none of them is a private neighbour of v_2. Therefore $\{v_1, v_2, v_3, v_4, v_5\}$ is not a g.t irredundant set. Consider $\{v_1, v_2, v_4, v_5\}$. v_5 belongs to $\{v_4, v_5\}, \{v_5, v_6\}, \{v_1, v_3, v_5\}$ and none of them is a private neighbour of v_5. Therefore $\{v_1, v_2, v_4, v_5\}$ is not a g.t irredundant set of C_6. $\{v_1, v_2, v_4, v_5\}$ is a maximal g.t irredundant set of C_6. Consider 3 element set of C_6. There are twenty,three-element sets.

They are $\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}, \{v_3, v_4, v_5\}, \{v_4, v_5, v_6\}, \{v_5, v_6, v_1\}$,

$\{v_6, v_1, v_2\}, \{v_1, v_2, v_4\}, \{v_2, v_3, v_5\}, \{v_3, v_4, v_6\}, \{v_4, v_5, v_1\}, \{v_5, v_6, v_2\}$,

$\{v_6, v_1, v_3\}, \{v_1, v_2, v_5\}, \{v_2, v_3, v_6\}, \{v_3, v_4, v_1\}, \{v_4, v_5, v_2\}, \{v_5, v_6, v_3\}$,

$\{v_6, v_1, v_4\}, \{v_1, v_3, v_5\}$ and $\{v_2, v_4, v_6\}$. None of them is maximal.Any 5 element subset of $V(C_6)$ is not a g.t irredundant set. Therefore $ir_{g,t}(C_6) = IR_{g,t}(C_6) = 4$.

Theorem 2.4.6 $ir_{g,t}(C_n) = IR_{g,t}(C_n) = \left\lceil \frac{n}{2} \right\rceil + 1$.

39
Proof

Case(i): $^\prime n^\prime = 2n$

Let $V(C_{2n})=\{u_1, u_2, ..., u_{2n}\}$. Let $S=\{u_1, u_2, u_3, u_5, u_7, ..., u_{2n}\}$. Clearly S is a maximal $g.t$ irredundant set of C_{2n} of cardinality $n + 1$. Let T be any subset of $V(C_{2n})$ of cardinality $n + 2$. Then either T contains five consecutive terms of $V(C_{2n})$ or three consecutive terms occurring in two different places. In either case T is not a $g.t$ irredundant set of C_{2n}. Let T be any $g.t$ irredundant subset of $V(C_{2n})$ of cardinality n. Then either T contains all odd suffixed terms or all even suffixed terms or three consecutive terms and other $n - 3$ terms having suffixes with the opposite parity of the suffix of the middle term. In any case T is contained properly in a $g.t$ irredundant set of C_{2n}. Also any $g.t$ irredundant subset of $V(C_{2n})$ of cardinality less than or equal to $n - 1$ can be proved to be contained in a maximal $g.t$ irredundant set of C_{2n}. Hence $ir_{g.t}(C_{2n}) = n + 1$.

Also $IR_{g.t}(C_n) = n + 1$.

Case(ii): $^\prime n^\prime = 2n + 1$

Let $V(C_{2n+1})=\{u_1, u_2, ..., u_{2n+1}\}$. Let $S=\{u_1, u_2, u_3, u_4, u_6, u_8, ..., u_{2n}\}$. Clearly S is a maximal $g.t$ irredundant set of C_{2n+1} of cardinality $n + 2$. Let T be any subset of $V(C_{2n+1})$ of cardinality $n + 3$. Then either T contains six consecutive terms of $V(C_{2n+1})$ or three consecutive terms occurring in three
different places. In either case \(T \) is not a \(g.t \) irredundant set of \(C_{2n+1} \). Let \(T \) be any \(g.t \) irredundant subset of \(V(C_{2n+1}) \) of cardinality \(n+1 \). Then either \(T \) contains all odd suffixed terms with exactly one even suffixed term or all even suffixed terms with exactly one odd suffixed term or three consecutive terms and other \(n - 3 \) terms having suffixes with the opposite parity of the suffix of the middle term. In any case \(T \) is contained properly in a \(g.t \) irredundant set of \(C_{2n+1} \). Also any \(g.t \) irredundant subset of \(V(C_{2n+1}) \) of cardinality less than or equal to \(n \) can be proved to be contained in a maximal set of \(C_{2n+1} \).

Hence \(\text{ir}_g.t(C_{2n+1}) = \text{IR}_g.t(C_{2n+1}) = n + 2 = \lceil \frac{2n+1}{2} \rceil + 1 = \lceil \frac{n}{2} \rceil + 1. \)

\[\square \]

Theorem 2.4.7 Let \(G \) be a simple graph. Any minimal global transversal set of \(G \) is a maximal \(g.t \) irredundant set of \(G \).

Proof

Let \(S \) be a minimal global transversal set of \(G \). Then \(S \) is a \(g.t \) irredundant set of \(G \). Suppose \(S \) is not a maximal \(g.t \) irredundant set of \(G \), then \(S \) is contained in a maximal \(g.t \) irredundant set of \(G \) say \(T \). Let \(u \in T - S \). Then \(S \cup \{u\} \) is a \(g.t \) irredundant set of \(G \). Therefore \(pn_c\{u, S \cup \{u\}\} \neq \phi \) or \(pn_{\beta_b}\{u, S \cup \{u\}\} \neq \phi \). Therefore there exists a maximum clique \(C \) such that \(u \in C \) and no vertex of \(S \) belongs to \(C \) or there exists a maximum independant set \(I \) such that \(u \in I \) and no vertex of \(S \) belongs to \(I \). Therefore
$S \cap C = \phi$ or $S \cap I = \phi$, a contradiction, since S is a global transversal set of G. Therefore S is a g.t irredundant set of G.

\textbf{Remark 2.4.8} \quad ir_{g.t}(G) \leq \tau_g(G) \leq \tau_G(G) \leq IR_{g.t}(G)

\textbf{Illustration 2.4.9}

In the above graph G, the only maximum clique is $\{v_3, v_4, v_6\}$ and the only maximum independent set is $\{v_1, v_3, v_5, v_7\}$. $\{v_3\}$ is a minimal global transversal set of minimum cardinality. Therefore $\tau_g(G) = 1$.

Since $ir_{g.t}(G) \leq t_g(G)$, $ir_{g.t}(G) = 1$. $\{v_4, v_5\}$ is a minimal global transversal set of maximum cardinality, $\tau_G(G) = 2$. $\{v_4, v_5\}$ is also a maximal g.t irredundant set of maximum cardinality. Therefore $IR_{g.t}(G) = 2$.

\textbf{Illustration 2.4.10}
In the above graph G, each edge is a clique and $\{v_1, v_3, v_5, v_7, v_9, v_{11}\}$ is the unique maximum independent set. Any global transversal set must intersect each edge and hence contains at least five points. If it contains exactly five points, then the transversal contains v_2, v_4, v_6, v_8 and v_{10}. The transversal also intersects the independent set and none of the points v_2, v_4, v_6, v_8 and v_{10} belongs to the unique independent set. Therefore any global transversal set contains at least six vertices. $\{v_1, v_2, v_4, v_6, v_8, v_{10}\}$ is a global transversal set of cardinality 6. Therefore $\tau_G(G) = 6$. $\{v_1, v_3, v_5, v_7, v_9, v_{11}\}$ is also a global transversal set. It can be seen that $\{v_2, v_3, v_4, v_8, v_9, v_{10}\}$ is a maximal g.t irredundant set of G. It can be verified that $ir_{g.t}(G) = 6$.

Illustration 2.4.11
In the above graph G, $\{v_3, v_4, v_5\}$ is the unique maximum clique. $\{v_1, v_3, v_6\}$, $\{v_1, v_4, v_6\}$, $\{v_2, v_4, v_6\}$, $\{v_2, v_4, v_7\}$, $\{v_1, v_5, v_7\}$, $\{v_1, v_4, v_7\}$, $\{v_1, v_3, v_7\}$ are the maximum independent sets. Here $ir_{g,t}(G) = \tau_g(G) = \tau_G(G) = IR_{g,t}(G) = 3$

Remark 2.4.12

(i) $ir_{g,t}(K_{1,n}) = 2, IR_{g,t}(K_{1,n}) = n, \forall n$.

(ii) $ir_{g,t}(K_{m,n}) = \begin{cases} \min\{m, n\} + 1 & \text{if } m \neq n. \\ m + 1 & \text{if } m = n \end{cases}$

$IR_{g,t}(K_{m,n}) = \begin{cases} \max\{m, n\} & \text{if } m \neq n. \\ m + 1 & \text{if } m = n \end{cases}$