CHAPTER 3

CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS

3.1 Introduction

Motivated by Brannan and Taha [28] and Srivastava et al. [128], several new subclasses of bi-univalent functions have been defined and investigated by researchers [7, 45, 55, 103, 129, 139, 141]. In light of this, in the first section of this chapter two new subclasses \(\mathcal{G}_B(\alpha, \lambda) \) and \(\mathcal{J}^*_{B}(\beta, \lambda) \) of analytic and bi-univalent functions in the open unit disk \(U \) are defined. Further, inspired by the works of Xu et al. [139, 141] in the following section of this chapter an interesting general subclass \(\mathcal{M}^{\psi,\psi}_{B}(\lambda) \) of analytic and bi-univalent functions in the open unit disk \(U \) is introduced and investigated. For aforementioned classes, the estimates on the first two Taylor-Maclaurin coefficients \(|a_2| / \lambda a_3 / | \) are obtained. The results presented in this chapter would generalize and improve some recent works of Ali et al. [7], Srivastava et al. [128], Murugusundaramoorthy and Magesh [93], Xu et al. [139] and other authors.

3.2 The Class of Bi-starlike and Strongly Bi-starlike Functions

Definition 3.2.1. A function \(f(z) \) given by (1.1) is said to be in the class \(\mathcal{J}^*_{B}(\beta, \lambda) \) if the following conditions are satisfied:

\[
f \in \Sigma_B, \quad R - \frac{zf'(z)}{(1 - \lambda)f(z) + \lambda zf'(z)} > \beta, \quad 0 \leq \beta < 1; \quad 0 \leq \lambda < 1, \quad z \in U \tag{3.1}
\]

and

\[
R - \frac{wg'(z)}{(1 - \lambda)g(w) + \lambda wg'(w)} > \beta, \quad 0 \leq \beta < 1; \quad 0 \leq \lambda < 1, \quad w \in U, \tag{3.2}
\]

where the function \(g \) is given by (1.4).
Definition 3.2.2. A function $f(z)$ given by (1.1) is said to be in the class $G_{\Sigma_B}(\alpha, \lambda)$ if the following conditions are satisfied:

$$f \in \Sigma_B, \quad \arg \frac{zf'(z)}{(1 - \lambda)f(z) + \lambda zf'(z)} : < \frac{\alpha \pi}{2}, \quad 0 < \alpha \leq 1; \quad 0 \leq \lambda < 1, \quad z \in U$$

and

$$\arg \frac{wg'(z)}{(1 - \lambda)g(w) + \lambda wg'(w)} : < \frac{\alpha \pi}{2}, \quad 0 < \alpha \leq 1; \quad 0 \leq \lambda < 1, \quad w \in U,$$

where the function g is given by (1.4).

It is interest to note that, for $\lambda = 0$ the class $J_{\Sigma_B}^{\alpha} (\beta, 0) = S_{\Sigma_B}^{\beta} (\beta)$ bi-starlike functions of order β and $G_{\Sigma_B}(\alpha, 0) = SS_{\Sigma_B}^{\alpha}(\alpha)$ of strongly bi-starlike functions of order α.

In order to derive our main results, we recall the following lemma.

Lemma 3.2.3. [106] If $h \in P$ then $|c_k| \leq 2$ for each k, where P is the family of all functions h analytic in U for which $R\{h(z)\} > 0$, where $h(z) = 1 + c_1z + c_2z^2 + \ldots$ for $z \in U$.

Now, we find the estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in the class $f \in G_{\Sigma_B}(\alpha, \lambda)$.

Theorem 3.2.4. Let $f(z)$ given by (1.1) be in the class $G_{\Sigma_B}(\alpha, \lambda)$, $0 < \alpha \leq 1$ and $0 \leq \lambda < 1$. Then

$$|a_2| \leq \frac{2\alpha}{(1 - \lambda)^{\alpha - 1} + \alpha},$$

and

$$|a_3| \leq \frac{4\alpha^2}{(1 - \lambda)^2} + \frac{\alpha}{1 - \lambda}.$$

Proof. It follows from (3.3) and (3.4) that

$$\frac{zf'(z)}{(1 - \lambda)f(z) + \lambda zf'(z)} = \left[\rho(z)\right]^\alpha,$$

and

$$\frac{wg'(z)}{(1 - \lambda)g(w) + \lambda wg'(w)} = \left[\varrho(w)\right]^\alpha.$$
where \(p(z) \) and \(q(w) \) in \(P \) and have the forms

\[
p(z) = 1 + p_1 z + p_2 z^2 + \ldots \quad (3.9)
\]

and

\[
q(z) = 1 + q_1 w + q_2 w^2 + \ldots \quad (3.10)
\]

Now, equating the coefficients in (3.7) and (3.8), we get

\[
(1 - \lambda) a_2 = \alpha p_1 \quad (3.11)
\]

\[
(\lambda^2 - 1) a_2^2 + 2(1 - \lambda) a_3 = \frac{1}{2} \alpha (\alpha - 1) p_1^2 + 2 \alpha p_2 \quad (3.12)
\]

\[
-(1 - \lambda) a_2 = \alpha q_1 \quad (3.13)
\]

and

\[
(\lambda^2 - 4 \lambda + 3) a_2^2 - 2(1 - \lambda) a_3 = \frac{1}{2} \alpha (\alpha - 1) q_1^2 + 2 \alpha q_2 \quad (3.14)
\]

From (3.11) and (3.13), we get

\[
\rho_1 = -q_1 \quad (3.15)
\]

and

\[
2(1 - \lambda)^2 a_2^2 = \alpha^2 (p_1^2 + q_1^2) \quad (3.16)
\]

From (3.12), (3.14) and (3.16), we obtain

\[
a_2^2 = \frac{\alpha^2 (p_2 + q_2)}{(\alpha + 1)(1 - \lambda)^2}.
\]

Applying Lemma 3.2.3 for the coefficients \(p_2 \) and \(q_2 \), we immediately have

\[
\frac{1}{a_2} \leq \frac{2 \alpha}{(1 - \lambda) (1 + \alpha)}.
\]

This gives the bound on \(a_2 \) as asserted in (3.5).

Next, in order to find the bound on \(a_3 \), by subtracting (3.14) from (3.12), we get

\[
4(1 - \lambda) a_3 - 4(1 - \lambda) a_2^2 = \alpha (p_2 - q_2) + \frac{\alpha (\alpha - 1)}{2} (p_1^2 - q_1^2) \quad (3.17)
\]
It follows from (3.15), (3.16) and (3.17) that

$$a_3 = \frac{\alpha(p_2 - q_2)}{4(1 - \lambda)} + \frac{\alpha^2(p_1^2 + q_1^2)}{2(1 - \lambda^2)}. \quad (3.18)$$

Applying Lemma 3.2.3 once again for the coefficients p_1, p_2, q_1 and q_2, we readily get

$$/a_3/ \leq \frac{4\alpha^2}{(1 - \lambda)^2} + \frac{\alpha}{1 - \lambda}.$$

This completes the proof of Theorem 3.2.4. \qed

In the following theorem, we find the estimates on the coefficients $/a_2/$ and $/a_3/$ for functions in the class $J^{1/2}_0(\beta, \lambda)$.

Theorem 3.2.5. Let $f(z)$ given by (1.1) be in the class $J^{1/2}_0(\beta, \lambda)$, $0 \leq \beta < 1$ and $0 \leq \lambda < 1$. Then

$$/a_2/ \leq \frac{\tilde{\beta}(1 - \beta)}{1 - \lambda} \quad (3.19)$$

and

$$/a_3/ \leq \frac{4(1 - \beta)^2}{(1 - \lambda)^2} + \frac{(1 - \beta)}{1 - \lambda}. \quad (3.20)$$

Proof. It follows from (3.1) and (3.2) that there exists $p, q \in P$ such that

$$\frac{zf(z)}{(1 - \lambda)f(z) + \lambda zf(z)} = \beta + (1 - \beta)p(z) \quad (3.21)$$

and

$$\frac{wg(z)}{(1 - \lambda)g(w) + \lambda wg(w)} = \beta + (1 - \beta)q(w), \quad (3.22)$$

where $p(z)$ and $q(w)$ have the forms (3.9) and (3.10), respectively. Equating coefficients in (3.21) and (3.22), we get

$$(1 - \lambda)a_2 = (1 - \beta)p_1 \quad (3.23)$$

$$(\lambda^2 - 1)a_2^2 + 2(1 - \lambda)a_3 = (1 - \beta)p_2 \quad (3.24)$$

$$-(1 - \lambda)a_2 = (1 - \beta)q_1 \quad (3.25)$$
and
\[(\lambda^2 - 4\lambda + 3)a_2^2 - 2(1 - \lambda)a_3 = (1 - \beta)q_2. \] (3.26)
From (3.23) and (3.25), we get
\[p_1 = -q_1 \] (3.27)
and
\[2(1 - \lambda)^2a_2^2 = (1 - \beta)^2(p_1^2 + q_1^2). \] (3.28)
Also, from (3.24), (3.26) and (3.28), we obtain
\[a_2^2 = \frac{(1 - \beta)(p_2 + q_2)}{2(1 - \lambda)^2}. \]
Applying Lemma 3.2.3 for the coefficients \(p_2 \) and \(q_2 \), we immediately have
\[|a_2| \leq \frac{2(1 - \beta)}{1 - \lambda}. \]
This gives the bound on \(|a_2| \) as asserted in (3.19).

Next, in order to find the bound on \(|a_3| \), by subtracting (3.26) from (3.24), we get
\[4(1 - \lambda)a_3 - 4(1 - \lambda)a_2^2 = (1 - \beta)(p_2 - q_2). \] (3.29)
It follows from (3.27), (3.28) and (3.29) that
\[a_3 = \frac{(1 - \beta)(p_2 - q_2)}{4(1 - \lambda)} + \frac{(1 - \beta)^2(p_1^2 + q_1^2)}{2(1 - \lambda)^2}. \] (3.30)
Applying Lemma 3.2.3 once again for the coefficients \(p_1, p_2, q_1 \) and \(q_2 \), we readily get
\[|a_3| \leq \frac{4(1 - \beta)^2}{(1 - \lambda)^2} + \frac{1 - \beta}{1 - \lambda}. \]
This completes the proof of Theorem 3.2.5.

Taking \(\lambda = 0 \) in Theorems 3.2.4 and 3.2.5 one can get the following corollaries.
Corollary 3.2.6. Let \(f(z) \) given by (1.1) be in the class \(SS_{\xi,\chi}(\alpha) \) and \(0 < \alpha \leq 1 \). Then
\[
|a_2| \leq \frac{2\alpha}{\alpha + 1}
\]
(3.31)
and
\[
|a_3| \leq 4\alpha^2 + \alpha.
\]
(3.32)

Corollary 3.2.7. Let \(f(z) \) given by (1.1) be in the class \(S_{\xi,\chi}(\beta) \) and \(0 \leq \beta < 1 \). Then
\[
|a_2| \leq \sqrt{2 - 2\beta} \quad \text{and} \quad |a_3| \leq 4(1 - \beta)^2 + (1 - \beta).
\]
(3.33)

3.3 Coefficient Bounds for The General Class of Bi-starlike Functions

This section is motivated and stimulated especially by the works of Murugusundaramoorthy and Magesh [93] and Xu et al. [139, 141]. Here we propose to investigate the bi-univalent function class \(\mathcal{M}_{\xi,\chi}^{\psi}(\lambda) \).

Now, we define \(SS_{\xi,\chi}(\alpha, \lambda) \) of functions \(f \in \mathcal{A} \) satisfying the following conditions
\[
f \in \Sigma_{\chi}, \quad \arg - \frac{zf'(z)}{(1-\lambda)z + \lambda f(z)} < \frac{\alpha \pi}{2} \quad \text{and} \quad \arg - \frac{wg'(w)}{(1-\lambda)w + \lambda g(w)} < \frac{\alpha \pi}{2}
\]
for some \(\alpha (0 < \alpha \leq 1) \), where \(z, w \in U \), and \(g(w) \) is the extension of \(f^{-1}(w) \) to \(U \). Similarly, we say that a function \(f \in \mathcal{A} \) belongs to the class \(\mathcal{M}_{\xi,\chi}(\beta, \lambda) \) if \(f(z) \) satisfies the following inequalities
\[
f \in \Sigma_{\chi}, \quad R - \frac{zf'(z)}{(1-\lambda)z + \lambda f(z)} > \beta \quad \text{and} \quad R - \frac{wg'(w)}{(1-\lambda)w + \lambda g(w)} > \beta
\]
for some \(\beta (0 \leq \beta < 1) \), where \(z, w \in U \), and \(g(w) \) is the extension of \(f^{-1}(w) \) to \(U \). The classes \(SS_{\xi,\chi}(\alpha, \lambda) \) and \(\mathcal{M}_{\xi,\chi}(\beta, \lambda) \) were introduced by Murugusundaramoorthi and Magesh [93].

Definition 3.3.1. Let \(f \in \mathcal{A} \) and the functions \(\varphi, \psi : U \to \mathbb{C} \) be so constrained that
\[
\min \{R(\varphi(z)), R(\psi(z))\} > 0, \quad z \in U
\]
and \(\varphi(0) = \psi(0) = 1 \). We say that \(f \in \mathcal{M}_{\Sigma_B}^{\psi}(\lambda) \) if the following conditions are satisfied

\[
f \in \Sigma_B, \quad \frac{zf'(z)}{(1-\lambda)z + \lambda f(z)} \in \varphi(U), \quad z \in U \tag{3.34}
\]

and

\[
\frac{wg'(w)}{(1-\lambda)w + \lambda g(w)} \in \psi(U), \quad w \in U, \tag{3.35}
\]

where \(0 \leq \lambda \leq 1 \) and the function \(g(w) \) is the extension of \(f^{-1}(w) \) to \(U \).

We note that by specializing the functions \(\varphi \) and \(\psi \) we get interesting known and new subclasses of the analytic function class \(A \). For example, if we set

\[
\varphi(z) = \psi(z) = \frac{1 + z^{-\alpha}}{1 - z}, \quad 0 < \alpha \leq 1, \quad z \in U
\]

and

\[
\varphi(z) = \psi(z) = \frac{1 + (1 - 2\beta)z}{1 - z}, \quad 0 \leq \beta < 1, \quad z \in U
\]

then the class \(\mathcal{M}_{\Sigma_B}^{\psi}(\lambda) \) reduces to \(SS_{\Sigma_B}^{\psi}(\alpha, \lambda) \) and \(\mathcal{M}_{\Sigma_B}(\beta, \lambda) \) respectively.

In the next theorem, we find the general estimates for the coefficients \(|a_2| \) and \(|a_3| \) for functions in the class \(\mathcal{M}_{\Sigma_B}^{\psi}(\lambda) \).

Theorem 3.3.2. Let \(f(z) \) be of the form (1.1). If \(f \in \mathcal{M}_{\Sigma_B}^{\psi}(\lambda) \), then

\[
|a_2| \leq \frac{\varphi^\prime(0) + \psi^\prime(0)}{4(\lambda^2 - 3\lambda + 3)} \tag{3.36}
\]

and

\[
|a_3| \leq \frac{(\lambda^2 - 4\lambda + 6)\varphi^\prime(0) + (\lambda^2 - 2\lambda)\psi^\prime(0)}{(12 - 4\lambda)(\lambda^2 - 3\lambda + 3)}. \tag{3.37}
\]

Proof. Since \(f \in \mathcal{M}_{\Sigma_B}^{\psi}(\lambda) \). From (3.34) and (3.35), we have,

\[
\frac{zf'(z)}{(1-\lambda)z + \lambda f(z)} = \varphi(z), \quad z \in U \tag{3.38}
\]

and

\[
\frac{wg'(w)}{(1-\lambda)w + \lambda g(w)} = \psi(w), \quad w \in U, \tag{3.39}
\]

where

\[
\varphi(z) = 1 + \varphi_1 z + \varphi_2 z^2 + \ldots \tag{3.40}
\]
\[\psi(z) = 1 + \psi_1 z + \psi_2 z^2 + \ldots \] (3.41)

and satisfy the conditions of Definition 3.3.1. Now, equating the coefficients in (3.38) and (3.39), we get

\[(2 - \lambda) a_2 = \varphi_1 \] (3.42)

\[(\lambda^2 - 2\lambda) a_2^2 + (3 - \lambda) a_3 = \varphi_2 \] (3.43)

\[-(2 - \lambda) a_2 = \psi_1 \] (3.44)

and

\[(\lambda^2 - 4\lambda + 6) a_2^2 - (3 - \lambda) a_3 = \psi_2. \] (3.45)

From (3.42) and (3.44), we have

\[\varphi_1 = -\psi_1 \] (3.46)

and

\[2(2 - \lambda)^2 a_2^2 = \varphi_1^2 + \psi_1^2. \] (3.47)

From (3.43) and (3.45), we obtain

\[a_2^2 = \frac{\varphi_2 + \psi_2}{2(\lambda^2 - 3\lambda + 3)}. \] (3.48)

Since \(\varphi \in \varphi(U) \) and \(\psi \in \psi(U) \), we immediately have

\[|a_2| \leq |\varphi(0)| + |\psi(0)| \leq \frac{1}{4(\lambda^2 - 3\lambda + 3)}. \]

This gives the bound on \(|a_2| \) as asserted in (3.36).

Next, in order to find the bound on \(|a_3| \), by subtracting (3.45) from (3.43), we get

\[2(3 - \lambda) a_3 - 2(3 - \lambda) a_2^2 = \varphi_2 - \psi_2. \] (3.49)

It follows from (3.46), (3.48) and (3.49) that

\[a_3 = \frac{(\lambda^2 - 4\lambda + 6) \varphi_2 - (\lambda^2 - 2\lambda) \psi_2}{(6 - 2\lambda)(\lambda^2 - 3\lambda + 3)}. \] (3.50)
Since \(\varphi(z) \in \varphi(U) \) and \(\psi(z) \in \psi(U) \), we readily get
\[
|a_3| \leq \frac{(\lambda^2 - 4\lambda + 6)/\varphi''(0) + (\lambda^2 - 2\lambda)/\psi''(0)}{(12 - 4\lambda)(\lambda^2 - 3\lambda + 3)}.
\]
This completes the proof of Theorem 3.3.2.

If we choose
\[
\varphi(z) = \psi(z) = \frac{1 + z^{-\alpha}}{1 - z}, \quad 0 < \alpha \leq 1, \ z \in U
\]
in Theorem 3.3.2, we have the following corollary.

Corollary 3.3.3. Let \(f(z) \) be of the form (1.1) and in the class \(S^+_\Sigma_B(\alpha, \lambda) \), \(0 < \alpha \leq 1 \) and \(0 \leq \lambda \leq 1 \). Then
\[
|a_3| \leq \alpha \frac{2}{\lambda^2 - 3\lambda + 3} \quad \text{and} \quad |a_5| \leq \frac{2\alpha^2}{3 - 2\lambda}.
\]

If we set
\[
\varphi(z) = \psi(z) = \frac{1 + (1 - 2\beta)z}{1 - z}, \quad 0 \leq \beta < 1, \ z \in U
\]
in Theorem 3.3.2, we readily have the following corollary.

Corollary 3.3.4. Let be of the form (1.1) and in the class \(M_{\Sigma_B}(\beta, \lambda) \), \(0 \leq \beta < 1 \) and \(0 \leq \lambda \leq 1 \). Then
\[
|a_3| \leq \frac{2(1 - \beta)}{\lambda^2 - 3\lambda + 3} \quad \text{and} \quad |a_5| \leq \frac{2(1 - \beta)}{3 - \lambda}.
\]

Remark 3.3.5. For \(\lambda = 0 \) the results discussed in this section are coincidence with outcome of Xu et al.[139]. Taking \(\lambda = 1 \) in Corollaries 3.3.3 and 3.3.4, the estimates on the coefficients \(|a_2| \) and \(|a_3| \) are improvement of the estimates on the first two Taylor-Maclaurin coefficients obtained in [78, Corollaries 2.3 and 3.3]. Furthermore, various other interesting corollaries and consequences of our main result can be derived similarly by specializing \(\varphi \) and \(\psi \).

Most of the results discussed in this chapter are published in “Abstr. Appl. Anal. 2013, Art. ID 573017, 3 pp.”