List of Figures

2.1 Conventional temporal association learning process 19
3.1 Modified learning process of temporal association rules 30
3.2 Temporal FP-Tree .. 35
3.3 Frequent pattern with prefix H ... 41
3.4 Frequent pattern with prefix C ... 42
3.5 A single prefix interval path that consist of two branch (I3, I1, I2) 44
3.6 Frequent pattern in different interval .. 47
3.7 Divide and Conquer method on the basis of time Database 50
3.8 H-struct, the hyper structure for storing frequent -item projection in specific first interval <*, 01,04> ... 51
3.9 H-struct, the hyper structure for storing frequent -item projection in specific second interval <*,06,04> ... 51
3.10 FP tree with different calendar time interval ... 57
3.11 Lattice of item {A, B, C, D} ... 61
3.12 Lattice of temporal item {A, B, C, D } .. 61
3.13 Enumeration tree .. 65
3.14 Scalability on Transaction for dense dataset ... 69
3.15 Scalability on transaction for sparse dataset .. 70
3.16 Scalability for Dense dataset ... 71
3.17 Scalability for sparse dataset .. 72
3.18 Scalability on dataset PimaIndians.D42.N768.C2.num 73
3.19 Frequent patters from dataset PimaIndians.D42.N768.C2.num 74
3.20 Memory usage from dataset .. 75
3.21 Scalability with threshold on dataset ... 76
3.22 The memory usage for PimaIndian.D42.N768.C2.num dataset 77
3.23 Nodes for finding frequent patterns .. 78
3.24 Computation of frequent patterns ... 79
3.25 Level of tree required to compute frequent patterns 80
3.26 Candidate generation time ... 81
LIST OF FIGURES

4.1 Tree after first split .. 94
4.2 Tree split on second level class label attribute. 95
4.3 After third level splitting of tree. 96
4.4 Segmentation of time dimension. 98
4.5 Decision Tree .. 103
4.6 FP-tree on first calendar schema 108
4.7 Accuracy on agriculture data 110
4.8 Classification rules for wine.D68.N178.C3 data 111
4.9 Classification rules for mushroom.D127.N8124.C2 dataset ... 112
4.10 Classification rule with support for wine.D68.N178.C3 113
4.11 Accuracy on wine.D68.N178.C3 dataset 114
4.13 Execution time .. 116
4.14 Accuracy Chart ... 117
4.15 Generated Rules ... 118
4.16 Temporal vs non-temporal frequent sets 119

5.1 Sliding window of size 8 127
5.2 Tilted time window with Quarter 131
5.3 Natural tilted time window 132
5.4 Logarithmic time scale .. 134
5.5 Experiment result with Soybean data 142
5.6 Experimental result with hypo data set 143
5.7 Experimental result with crx data set 144

6.1 Two sequences with similar patterns. 150
6.2 Before mean value subtraction. The two sequences have similar patterns but their values may differ significantly. 150
6.3 The Sub sequence matching problem can be converted into whole matching by sliding window of length n across the long sequence . 151
6.4 Example of Sub sequent Matching 151
6.5 Sub sequent the time series 152
6.6 After mean value subtraction 153
6.7 Normalized time series. 154
6.8 Time series with segment 155
6.9 Data reduction technique 162
6.10 Aggregated data ... 162
6.11 Time series with lower bound 163
6.12 The PAA representation of Fig. 6.11 A sequence of length 128 is reduced to 8 dimensions .. 164
6.13 A normal probability plot of the cumulative distribution 164
6.14 Symbolic Conversion of time series 166
6.15 Time Series from Chronological Data 167
6.16 PAA representation of time series 167
6.17 Symbolic representation of above time series 168
6.18 Time Series from Chronobiological Dataset 168
6.19 PAA representation of time series 169
6.20 Keogh Time series data pgt50_cdc15 169
6.21 pgt50_cdc15 Window size vs. variation on Support & Confidence .. 170
A.1 Chronological development of temporal data mining 191