CONTENTS

CHAPTER I : INTRODUCTION

<table>
<thead>
<tr>
<th>PARTICULARS</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1.1] Why Reliability</td>
<td>1</td>
</tr>
<tr>
<td>[1.2] Important system characteristics</td>
<td>3</td>
</tr>
<tr>
<td>(i) Reliability</td>
<td>3</td>
</tr>
<tr>
<td>(ii) Availability</td>
<td>5</td>
</tr>
<tr>
<td>(iii) Mean-time-to-system-failure (MTSF)</td>
<td>6</td>
</tr>
<tr>
<td>(iv) Mean-sojourn-time in a state</td>
<td>6</td>
</tr>
<tr>
<td>(v) Expected number of visits to a state</td>
<td>7</td>
</tr>
<tr>
<td>(vi) Expected duration of stay in a state</td>
<td>7</td>
</tr>
<tr>
<td>[1.3] Failures and failure rates</td>
<td>7</td>
</tr>
<tr>
<td>(a) Early failures</td>
<td>8</td>
</tr>
<tr>
<td>(b) Chance or random failures</td>
<td>9</td>
</tr>
<tr>
<td>(c) Wear-out failures</td>
<td>9</td>
</tr>
<tr>
<td>[1.4] System configurations</td>
<td>10</td>
</tr>
<tr>
<td>(a) Series configuration</td>
<td>10</td>
</tr>
<tr>
<td>(b) Parallel redundant system configuration</td>
<td>11</td>
</tr>
<tr>
<td>(c) K out of n:F system configuration</td>
<td>12</td>
</tr>
<tr>
<td>(d) K out of n:G system configuration</td>
<td>13</td>
</tr>
<tr>
<td>(e) Standby redundant systems</td>
<td>13</td>
</tr>
<tr>
<td>(f) Priority redundant systems</td>
<td>14</td>
</tr>
</tbody>
</table>
(g) Other configuration 14
[1.5] Repairable systems 14
(a) On and off operating system 14
(b) Continuously operating system 14
(c) Intermittently operating system 15
[1.6] Criteria’s affecting the reliability 15
(a) Passive Redundancy 15
(b) Maintainability 16
(c) Transfer switch 17
(d) Inspection 17
[1.7] Stochastic process 18
(a) Markov process 18
(b) Markov chains 19
(c) Counting process 20
(d) Poisson process 21
(e) Renewal process 21
(f) Markov-renewal process 22
(g) Semi-Markov process 22
[1.8] Present work and its relevance 22

CHAPTER II: Profit evaluation of a production station subject to temperature condition
[2.1] Introduction 30
[2.2] Model A 31
[2.3](a) System description and assumptions 32
[2.3](b) Notations 32
[2.3](c) State space of the model 33
[2.4] Transition probabilities and sojourn times 36
[2.5] Time to system failure 41
[2.6] Idle time analysis of the machine in (0,t] 51
CHAPTER III : CONFIGURATIONAL MODELING AND ANALYSIS OF A HIGH PRESSURE OXYGEN PLANT

[3.1] Introduction 83
[3.2] Model C 83
[3.3] System Description and Assumptions 86
[3.4] Transition probabilities and sojourn times 87
[3.5] Time to system failure 90
[3.6] Availability analysis 92
[3.7] Busy period analysis 95
[3.8] Particular cases 97
[3.9] Cost Analysis 98
CHAPTER IV: ON THE CONFIGURATIONAL MODELING AND STOCHASTIC ANALYSIS OF A COMPLEX SYSTEM HAVING FOUR TYPES OF NON-IDENTICAL UNITS

[4.1] Introduction 103
[4.2] Transition probabilities and sojourn times 107
[4.3] Mean-time-to-system-failure i.e. MTSF 113
[4.4] System availability analysis 117
[4.5] Busy period analysis 122
[4.6] Particular cases 125
[4.7] Cost analysis 127
[4.8] Graphical representation 127

CHAPTER V: ON THE CONFIGURATIONAL MODELING AND ANALYSIS OF A CHARGING CAR SYSTEM OF THE COKE-OVEN AREA OF THE INTEGRATED STEEL PLANT

[5.1] Introduction 132
[5.2] Model E 134
[5.3] Transition probabilities and mean-sojourn times 139
[5.4] Mean-time-to-system-failure i.e. MTSF 156
[5.5] Availability analysis 163
[5.6] Expected busy period analysis of the repairman in simple repair in (0,t] 169
[5.7] Expected busy period analysis of the repairman in schedule maintenance in (0,t] 173
[5.8] Expected busy period analysis of the repairman in emergent repair in (0,t] 174
[5.9] Particular cases 176
[5.10] Cost analysis 185
CHAPTER VI : PROFIT ANALYSIS OF JOB PROCESSING SYSTEMS

[6.1] Introduction 189
[6.2] Model F 189
[6.3] Transition probabilities and sojourn times 193
[6.4] Time to system failure 196
[6.5] Availability analysis 199
[6.6] Busy period analysis of the repairman in repair in \([0, t]\) 201
[6.7] Expected preparation time of the machine in \([0, t]\) 203
[6.8] Particular cases 204
[6.9] Cost analysis 206
[6.10] Graphical Representation 207
[6.12] Transitional probabilities and sojourn times 213
[6.13] Time to system failure 216
[6.14] Availability analysis 218
[6.15] Busy period analysis 221
[6.16] Particular cases 224
[6.17] Cost analysis 224
[6.18] Graphical Representation 227

REFERENCES 228