LIST OF CONTENTS

I DECLARATION
II CERTIFICATE
III ACKNOWLEDGEMENT
IV LIST OF TABLES i - iv
V LIST OF PLATES & MAPS i - iv
VI LIST OF GRAPHS i - vi

1- INTRODUCTION 01- 09

1.1 Distribution
1.2 Phenology
1.3 Morphology
1.4 Silvicultural Characters
1.5 Reproduction
1.6 Uses
1.7 Plant-Insect Interactions
1.8 Pest outbreaks
1.9 Management
1.9.1 Biopesticide
1.9.1.1 Types of bio pesticides
1.9.1.2 Advantages of Bio pesticides
1.9.2 Pest management principles
1.10 Aims and objectives of the proposed research

2- REVIEW OF LITERATURE 10 – 34

2.1 Nomenclature of Shisham
2.2 Distribution
2.3 Entomology of Shisham
2.4 Nomenclature of Dichomeris eridantis
2.5 Pest Status and Population fluctuation
2.6 Biology
2.7 Insect plant interaction
2.8 Effect of Humidity and Temperature
2.9 Consumption and Utilisation of food
2.10 Seasonal fluctuation and Extent of Damage
2.11 Pest management
2.11.1 Biopesticide
2.11.1.1 Botanical Pesticides
2.11.1.2 Commercial Pesticides
2.11.1.3 Microbial Pesticides

3. MATERIALS AND METHODS 35 -58

3.1 BIOLOGY
3.1.1 Survey and collection of insects
3.1.2 Rearing of Dichomeris eridantis
3.1.3 Laboratory studies
3.2 EFFECT OF TEMPERATURE AND HUMIDITY
3.3 FOOD CONSUMPTION AND UTILIZATION BY D. eridantis
3.4 SEASONAL FLUCTUATION AND EXTENT Of DAMAGE

3.5 MANAGEMENT

3.5.1 (A) Extracted Botanicals (First, Second and Third Sets of experiments)

3.5.1.1 Water extraction and screening of plant species for their pesticidal properties

3.5.1.2 Soxhlet Extraction of the screened plant species

3.5.2 (B) Commercial (Fourth Set of experiments)

3.5.2.1 Bioassay of Neemexcel (Commercial botanical)

3.5.2.2 Bioassay of imidacloprid (Commercial insecticide)

3.5.3 (C) Microbial (Fifth and Sixth Sets of experiments)

3.5.3.1 Fifth Set (Bioassay of biopesticide of Bacterial origin)

3.5.3.2 Sixth Set (Bioassay of biopesticide of Fungal origin)

3.5.4 Comparative analysis for selecting the best treatments from all the six sets of laboratory bioassay experiments and standardization of their effective concentrations for the field

3.5.5 Field Experiment

4. RESULTS

4.1 BIOLOGY

4.1.1 LARVAL STAGE

4.1.3 PUPAL STAGE

4.1.3 ADULT STAGE

4.1.4 EGG STAGE

4.1.5 LIFE CYCLE AND GENERATIONS

4.2 EFFECT OF HUMIDITY AND TEMPERATURE

4.3 CONSUMPTION AND UTILIZATION

4.4 SEASONAL FLUCTUATION AND EXTENT OF DAMAGE

4.4.1 Seasonal Fluctuation

4.4.2 Statistical analysis

4.4.3 Natural enemies

4.4.4 Extent of damage

4.5 MANAGEMENT

4.5.1 Experiment layout

4.5.2 Probit analysis

4.5.3 Botanical Pesticides-Extraction of Botanicals (For First, Second and Third sets of experiments)

4.5.3.1 Water extraction and Solvent extraction

4.5.3.2 First set of experiments

4.5.3.2.1 Bioassay of *Eucalyptus tereticornis* Petroleum Ether (EPE) extract, *Eucalyptus tereticornis* Acetone (EAC) extract and *Eucalyptus tereticornis* Methanol (EMT) extract

4.5.3.2.2 Statistical analysis

4.5.3.2.3 Concentration - Mortality Response studies based on Probit analysis

4.5.3.2.3.1 First set of experiment — Concentration - Mortality response of *Eucalyptus* Methanol extract (EMT)

4.5.3.3 Second Set of experiments
4.5.3.3.1 Bioassay of *Vitex negundo* Petroleum Ether (VPE) extract, *Vitex negundo* Acetone (VAC) extract and *Vitex negundo* Methanol (VMT) extract

4.5.3.3.2 Statistical analysis

4.5.3.3.3 Second set of experiment - Concentration - Mortality response of *Vitex* Acetone extract (VAC)

4.5.3.4. Third Set of experiments

4.5.3.4.1 Bioassay of *Jatropha curcas* Petroleum Ether extract (JPE), *Jatropha curcas* Acetone (JAC) extract and *Jatropha curcas* Methanol (JMT) extract

4.5.3.4.2 Statistical analysis

4.5.3.4.3 Third set of experiment – Concentration - Mortality response of *Jatropha* Methanol extract (JMT)

4.5.4 Commercial Pesticides

4.5.4.1 Fourth Set of experiments

4.5.4.1.1 Bioassay of Neemexcel (N) and Imidacloprid (IMI)

4.5.4.1.2 Statistical analysis

4.5.4.1.3 Fourth set of experiments - Concentration-Mortality response of *Imidacloprid* (IMI)

4.5.5.1 Fifth Set of experiments

4.5.5.1.1 Bioassay of *Bacillus thuringiensis israelensis* (Bti) - Bacticide and *Bacillus thuringiensis kurstaki* (Btk) - Biolep

4.5.5.1.2 Statistical analysis

4.5.5.1.3 Fifth set of experiment – Concentration - mortality response due to Bacticide application

4.5.5.2 Sixth Set of experiments (Microbial Biopesticide)

4.5.5.2.1 Bioassay of *Acremonium perscinum* (ACR) and *Beauveria bassiana* (Bb)

4.5.5.2.2 Statistical analysis

4.5.5.2.3 A comparative account of efficacy of *B. bassiana* (Bb) and *A. perscinum* (ACR) on the basis of their median lethal concentrations (LC₅₀)

4.5.5.2.4 Sixth set of experiments – Concentration - mortality response studies based on Probit analysis due to *B. bassiana* (Bb) treatment

4.5.5.2.5 Testing of Koch’s Postulates

4.5.6 Comparative analysis of efficacy of most effective pesticides from the six sets of experiments

4.5.6.1 Statistical analysis

4.5.6.2 A comparative account based on Concentration - mortality response

4.5.7 Standardized concentrations of different effective treatments

4.5.8 Field Experiment

5. DISCUSSION

5.1 BIOLOGY

5.2 EFFECT OF HUMIDITY AND TEMPERATURE

5.3 CONSUMPTION AND UTILIZATION

5.4 SEASONAL FLUCTUATION AND EXTENT OF DAMAGE

5.5 MANAGEMENT

5.5.1 Extracted Botanical Pesticides

5.5.1.1 First set of experiments-Bioassay of *Eucalyptus tereticornis* Petroleum ether (EPE) extract, *Eucalyptus tereticornis*
5.5.1.2. Second Set of experiments-Bioassay of *Vitex negundo* Petroleum ether (VPE) extract, *Vitex negundo* Acetone (VAC) extract and *Vitex negundo* Methanol (VMT) extract

5.5.1.3. Third Set of experiments-Bioassay of *Jatropha curcas* Petroleum ether extract (JPE), *Jatropha curcas* Acetone (JAC) extract / *Jatropha curcas* Methanol (JMT) extract

5.5.2. Commercial Pesticides

5.5.2.1. Fourth Set of experiments-Bioassay of Neemexcel (N) and Imidacloprid (IMI)

5.5.3. Microbial Pesticides

5.5.3.1. Fifth Set of experiments - Bioassay of *Bacillus thuringiensis israelensis*–Bacticide (*Bti*) and *Bacillus thuringiensis kurstaki* –Biolep (*Btb*)

5.5.3.2. Sixth Set of experiments-Bioassay of *Acremonium perscinum* and *Beauveria bassiana*

5.5.4. Field Experiment

6. SUMMARY

7. CONCLUSION

8. REFERENCES