CONTENTS

List of Figures
List of Tables
List of Flow Charts
List of Abbreviations

Chapter 1: Introduction
1.1. Introduction
1.2. Pulp and Paper Industry a Large Polluter of Water Body
1.3. Objectives

Chapter 2: Review of Literature
2.1. Paper Industry
2.2. Pulp and Paper Manufacturing
 2.2.1. Raw Materials
 2.2.2. Manufacturing Process
2.3. Waste Water Treatment
 2.3.1. Primary Treatment
 2.3.2. Secondary Treatment
 2.3.3. Tertiary and Advanced Treatment
2.4. Biological Approach by using Fungi and Bacteria
 2.4.2. Fungal Treatment
 2.4.2. Bacterial Treatment

Chapter 3: Collection of Effluent Samples from Pulp and Paper Mill and Characterization for Pollution Load
3.1. Introduction
3.2. Material and Methods
 3.2.1. Equipments, Glass wares, Plastic wares and Miscellaneous
 3.2.2. Reagents
 3.2.3. Mill Description
 3.2.4. Treatment Process
 3.2.5. Sampling
3.2.6. Characterization of Effluent

3.3 Results
 3.3.1. Temperature
 3.3.2. pH
 3.3.3. Lignin
 3.3.4. Colour
 3.3.5. Chemical Oxygen Demand
 3.3.6. Biochemical Oxygen Demand
 3.3.7. Total Solids
 3.3.8. Total Dissolved Solids
 3.3.9. Total Suspended Solids

3.4. Discussion

3.5. Conclusion

Chapter 4: Isolation and Screening of Bacteria which can Degrade Lingo-Cellulosic Compound Present in Pulp and Paper Mill Effluent

4.1. Introduction

4.2. Materials and Methods
 4.2.1. Chemicals, Equipments and Glassware
 4.2.2. Preparation of Media, Reagents and Stock Solutions
 4.3. Isolation
 4.2.4. Screening of Isolated Bacteria

4.3. Results
 4.3.1. Isolation of Bacteria
 4.3.2. Screening of Isolated Bacterial

4.4. Discussion

4.5. Conclusion

Chapter 5: Formulation of Bacterial Consortia and Studying their Synergistic Effect on Treatment of Effluent

5.1. Introduction

5.2. Material and Methods
 5.2.1. Chemicals and Reagents
 5.2.2. Equipments
Chapter 6: Optimization of Parameters (Retention Time, Nutrient Dosing, pH and Agitation) for Microbial Treatment of Effluent by using Taguchi Approach

6.1. Introduction 165
6.2. Material and Methods 166
 6.2.1. Chemicals and Reagents 166
 6.2.2. Equipments 166
 6.2.3. Glassware’s / Plastic Wares 167
 6.2.4. Adsorbable Organic Halides 167
 6.2.5. Mixed Liquor Suspended Solids 167
 6.2.6. Sludge Volume Index 167
 6.2.7. F/M Ratio 168
 6.2.8. Taguchi Approach for Design of Experiment 169
 6.2.9. Details of Bioreactor 170
 6.2.10. Optimization of Treatment Parameters in Bioreactor 171
 6.2.11. Bioremediation Experiments 176
6.3. Results 176
 6.3.1. Optimization Study of Treatment Process 176
 6.3.2. Level Average Response and Plot for S/N Ratio 181
 6.3.3. Verification Experiment 182
 6.3.4. Bioremediation Studies 183
Chapter 7: Identification of Bacteria of Best Selected Consortium by 16S rRNA Gene Sequence Analysis 202-214

7.1. Introduction 202
7.2. Materials and Methods 202
7.2.1. Equipments, Kits, Plastic Ware and Glassware 202
7.2.2. Media and Reagents 203
7.2.3. Procedure for Identification 203
7.3. Results 206
7.3.1. DNA Extraction 206
7.3.2. Polymerase Chain Reaction 207
7.3.3. Purification of PCR Products 207
7.3.4. 16S rRNA Gene Sequences Analysis 208
7.3.5. Phylogenetic Analysis 210
7.4. Discussion 211
7.5. Conclusion 214

Chapter 8: Study the Survival of Bacteria in the Effluent during Treatment Process 215-224

8.1. Introduction 215
8.2. Materials and Methods 216
8.2.1. Equipments, Plastic Ware and Glassware 216
8.2.2. Study of Bacterial Survival in Wastewater 216
8.3. Results 218
8.3.1. ERIC PCR 218
8.3.2. Verification Experiment 220
8.4. Discussion 223
8.5. Conclusion 224

Summary and Conclusion 225-229

References 230-263