LIST OF FIGURES

Fig. 2.1: A-C: line graphs showing the association between Discharge \((Q)\) and suspended sediment concentration \((SSC)\) for the Austre Brøggerbreen, Finsterwalderbreen and Erdmannbreen data respectively.

Fig. 2.1:D-F: line graphs showing the association between Discharge \((Q)\) and total dissolved ionic solids \((TDS_i)\) for the Austre Brøggerbreen, Finsterwalderbreen and Erdmannbreen data respectively.

Fig. 2.2. Sediment-transport curves for (A) total suspended sediment, and (B) suspended silt and clay and suspended sand, Canyon Creek above mouth at Wallace, Idaho.

Fig. 2.3. Sediment-transport curves for (A) total suspended sediment, and (B) suspended silt and clay and suspended sand, Ninemile Creek above mouth at Wallace, Idaho.

Fig. 2.4. Observed and computed (conventional and ANN technique) sediment concentration for Chester – Validation period (1986-1987)

Fig. 2.5. Observed and computed (conventional and ANN technique) sediment concentration for Thebes – Calibration period (1991)

Fig. 2.6. Bed load transport computed from dune migration in the Bovenrijin in several discharge waves.

Fig. 2.7. Suspended load transport in the river Waal
Fig. 2.8. Hysteresis loops for total suspended solids (mg/l) and turbidity (ntu) as a function of discharge (cfs) in Hopland watershed from Feb. 21 to Fe. 24, 2001.

Fig. 4.1 Schematic diagram of 24 m long tilting flume with cross section (100 width × 60 depth) cm

Fig. 4.2. Correction factor K, for influence of viscosity and surface tension

Fig. 4.3.(a) Hydrographs H-1 to H-7
Fig. 4.3.(b) Hydrographs H-8 to H-14
Fig. 4.4.(a) Hydrographs H-15 to H-21
Fig. 4.4.(b) Hydrographs H-22 to H-28

Fig. 6.1 (i-iv) Existence of hysteresis between sediment and water discharges for hydrographs H-1 to H-4.

Fig. 6.1 (v-x) Existence of hysteresis between sediment and water discharges for hydrographs H-5 to H-10.

Fig. 6.1 (xi-xvi) Existence of hysteresis between sediment and water discharges for hydrographs H-11 to H-16.

Fig. 6.1 (xviii-xxii) Existence of hysteresis between sediment and water discharges for hydrographs H-17 to H-22.

Fig. 6.1 (xxiii-xxviii) Existence of hysteresis between sediment and water discharges for hydrographs H-23 to H-28

Fig. 6.2. Computed versus observed values of dimensionless sediment load parameter ψ, for rising stage.

Fig. 6.3. Computed versus observed values of dimensionless sediment load parameter ψ, for falling stage.
Fig. 6.4. Relation between Γ and ψ for rising stage

Fig. 6.5. Relation between K_{1R} and H_1 for rising stage

Fig. 6.6. Relation between $K_{1R} \psi$ and Γ, for different values of S_1, for rising stage

Fig. 6.7. Relation between $K_{1R} K_{2R} \psi$ and Γ, for rising stage

Fig. 6.8. Relation between K_{2R} and S_1 for rising stage

Fig. 6.9. Relation between $K_{1F} K_{2F} \psi$ and Γ, for falling stage

Fig. 6.10. Relation between K_{1F} and H_1 for falling stage

Fig. 6.11. Relation between K_{2F} and S_1 for falling stage

Fig. 7.1. Comparison of computed and observed values of q_s for hydrographs H-15 to H-28 using regression analysis.

Fig. 7.2. Comparison of computed and observed values of q_s for hydrographs H-15 to H-28 using graphical analysis.