NOMENCLATURE

A_h Horizontal seismic coefficient
A_k Design horizontal acceleration spectrum value
B Footing width
CQC Complete quadratic combination
d Base dimension of the building at the plinth level
{d} Global displacement vector
E_c Modulus of elasticity of concrete
E_f Modulus of elasticity of footing
E_s Modulus of elasticity of soil
h Height of the building
h_i Height of floor i measured from the base,
I Importance factor
I_f Moment of inertia of footing based on cross section
K Axial spring constant or spring stiffness
[K] Global Stiffness Matrix
k_s Modulus of subgrade reaction
n Number of storeys in the building
P_k Modal participation factor
Q_i Design lateral force at floor i,
Q_{ik} Design lateral force at floor i in mode k
R Response reduction factor
[R] Global load vector
RCC Reinforced Cement Concrete
S_a Spectral acceleration
S_a / g Average response acceleration coefficient
S_d Spectral displacement
SSI Soil Structure Interaction
S_v Spectral velocity
T_a Fundamental natural period of vibration
ü,ü,u Nodal acceleration, velocity and displacement vectors
\[V_B\] Design seismic base shear
\[V_{ik}\] Peak shear force acting in storey \(i\) in mode \(k\)
\[W\] Seismic weight of the building frame
\[W_i\] Seismic weight of floor \(i\),
\[Z\] Zone factor
\[\lambda\] Peak Response
\[\mu_c\] Poisson’s ratio for concrete
\[\mu_s\] Poisson’s ratio for soil
\[\Phi_{ik}\] Mode shape coefficient at floor \(i\) in mode \(k\)
\[\omega_r\] Natural Frequency