CHAPTER I:

Introduction

1.1 General Description 01
1.2 Basic Terminology 03
1.3 Boundary Layer Theory 05
1.4 Heat Transfer 12
1.5 Mass Transfer 17
1.6 Magneto hydrodynamics (MHD) 19
1.7 Chemical Reaction 24
1.8 Thermal Diffusion or Soret effect 26
1.9 Porous Medium 27
1.10 Hall effect 30
1.11 Basic Equations 32
1.12 Boundary conditions 34
1.13 Review of the relevant literature 35
1.14 Non-Dimensional Quantities 42
1.15 Out line of the thesis 46
1.16 Some important physical quantities and their dimension 51
CHAPTER II:

Soret effect on an MHD free convective mass transfer flow past an accelerated vertical plate with chemical reaction

2.1 Introduction 53
2.2 Mathematical Analysis 54
2.3 Method of Solution 57
2.4 Skin Friction at the Plate 59
2.5 The Coefficient of Rate of Heat Transfer 60
2.6 The Coefficient of Mass Transfer 60
2.7 Results and Discussion 60
2.8 Conclusions 63
2.9 Nomenclature 74
Appendix 75

CHAPTER III:

Chemical Reaction Effect on an MHD Free Convective Mass transfer Flow past an impulsively started vertical plate

3.1 Introduction 78
3.2 Mathematical Analysis 79
3.3 Method of Solution 83
3.4 Skin Friction 84
3.5 Nusselt Number 85
3.6 Sherwood Number 85
<table>
<thead>
<tr>
<th>Section Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7 Results and Discussion</td>
<td>85</td>
</tr>
<tr>
<td>3.8 Conclusions</td>
<td>88</td>
</tr>
<tr>
<td>3.9 Nomenclature</td>
<td>99</td>
</tr>
<tr>
<td>Appendix</td>
<td>100</td>
</tr>
<tr>
<td>CHAPTER IV:</td>
<td></td>
</tr>
<tr>
<td>MHD Mass Transfer Flow past a Vertical Porous Plate Embedded in a Porous Medium in a Slip Flow Regime with Thermal Radiation and Chemical Reaction</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>103</td>
</tr>
<tr>
<td>4.2 Mathematical Analysis</td>
<td>106</td>
</tr>
<tr>
<td>4.3 Solution of the Problem</td>
<td>109</td>
</tr>
<tr>
<td>4.4 Skin Friction</td>
<td>111</td>
</tr>
<tr>
<td>4.5 Nusselt Number</td>
<td>112</td>
</tr>
<tr>
<td>4.6 Sherwood Number</td>
<td>112</td>
</tr>
<tr>
<td>4.7 Results and Discussion</td>
<td>112</td>
</tr>
<tr>
<td>4.8 Conclusions</td>
<td>115</td>
</tr>
<tr>
<td>4.9 Nomenclature</td>
<td>126</td>
</tr>
<tr>
<td>Appendix</td>
<td>128</td>
</tr>
<tr>
<td>CHAPTER V:</td>
<td></td>
</tr>
<tr>
<td>Hall Effect on Transient MHD Flow past an Impulsively Started Vertical Plate in a Porous Medium with Ramped Temperature, Rotation and Heat Absorption</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>129</td>
</tr>
<tr>
<td>5.2 Basic Equations</td>
<td>130</td>
</tr>
</tbody>
</table>
CHAPTER VI:

Unsteady MHD Mass Transfer Flow past a Suddenly Moving Vertical Plate in a Porous Medium in Rotating System

6.1 Introduction 163
6.2 Basic Equations 165
6.3 Method of Solution 171
6.4 Coefficient of Skin Friction 173
6.5 Coefficient of Rate of Heat transfer 174
6.6 Coefficient of Rate of Mass transfer 174
6.7 Results and Discussion 174
6.8 Conclusions 178
6.9 Nomenclature 196

Appendix 198
CHAPTER VII:

Effects of heat absorption and chemical reaction on a three dimensional MHD convective flow past a porous plate

7.1 Introduction

7.2 Basic Equations

7.3 Method of Solution

7.4 Cross Flow Solution

7.5 Solution for First Order Flow, Concentration and Temperature Field

7.6 Skin Friction at the plate

7.7 The Coefficient of Rate of Heat Transfer

7.8 The Coefficient of Mass Transfer

7.9 Current Density

7.10 Results and Discussion

7.11 Conclusions

7.12 Nomenclature

Appendix

CHAPTER VIII:

Three Dimensional Mixed convective Flow past a Porous plate Embedded in a Porous Medium in presence of Heat sink

8.1 Introduction

8.2 Basic Equations
CHAPTER IX:

Three Dimensional Free Convective Heat and Mass Transfer Flow past a Porous Plate with Sinusoidal Plate Temperature and Plate Concentration

9.1 Introduction 260
9.2 Basic Equations 262
9.3 Method of Solution 265
9.4 Cross Flow Solution 267
9.5 Solution for First Order Flow, Concentration and Temperature Field 269
9.6 Skin Friction at the plate 270
9.7 The Coefficient of Rate of Heat Transfer 270