CONTENTS

<table>
<thead>
<tr>
<th>Certificate</th>
<th>Declaration</th>
<th>Preface</th>
<th>Acknowledgement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>iv</td>
</tr>
</tbody>
</table>

Preface

Preface

i-iii

Acknowledgement

iv

Contents

CHAPTER-I INTRODUCTION 1-12

1.1 A brief account of calculus 2

1.2 Importance of the study of history of calculus 3

1.3 Guessing versus Reasoning 3

1.4 Doctrine of Atomism 4

1.5 Beauty of guessing 5

1.6 History of development of calculus 6

1.6.1 Ancient period 6

1.6.1(a) Method of Exhaustion 6

1.6.2 Medieval period 7

1.6.3 Modern period 7

1.7 Four problems before calculus 9

1.8 Area and Tangent problems 9

1.9 Stages of development of calculus 10

1.9.1 Anticipation stage 10

1.9.2 Development stage 10

1.9.3 Rigorisation stage 11

1.10 Three pillars of calculus 11

1.11 Three ingredients of modern calculus 11

1.12 Applications of calculus 12

1.13 Mathematics and principles of values 12

CHAPTER-II CALCULUS BEFORE NEWTON AND LEIBNIZ 13-56

2.1 Introduction 13

2.2 Incommensurability of length 13
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Irrationality of $\sqrt{2}$ and the Infinite</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>The Infinite and the Greek mathematics</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Limitation of Pythagoreans</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Nicholas of Cusa and the Infinite</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>Area problem</td>
<td>17</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Method of exhaustion</td>
<td>17</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Eudoxus’ principle</td>
<td>18</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Area of a circle</td>
<td>19</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Archimedes’ use of method of exhaustion</td>
<td>19</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Comments</td>
<td>21</td>
</tr>
<tr>
<td>2.7.6</td>
<td>Euclid’s use of method of exhaustion</td>
<td>22</td>
</tr>
<tr>
<td>2.7.7</td>
<td>Quadrature</td>
<td>22</td>
</tr>
<tr>
<td>2.8</td>
<td>The quadrature of segment of a parabola</td>
<td>23</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Visual demonstration of sum of the above series</td>
<td>25</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Comments</td>
<td>25</td>
</tr>
<tr>
<td>2.9</td>
<td>Solids of revolution</td>
<td>26</td>
</tr>
<tr>
<td>2.10</td>
<td>Failure of the Greeks</td>
<td>27</td>
</tr>
<tr>
<td>2.11</td>
<td>Era of translations</td>
<td>27</td>
</tr>
<tr>
<td>2.12</td>
<td>Medieval thoughts</td>
<td>28</td>
</tr>
<tr>
<td>2.12.1</td>
<td>Concept of changeable things and Merton scholars</td>
<td>28</td>
</tr>
<tr>
<td>2.12.2</td>
<td>Mean speed theorem</td>
<td>29</td>
</tr>
<tr>
<td>2.12.3</td>
<td>Nicole Oresme and graphical representation</td>
<td>30</td>
</tr>
<tr>
<td>2.12.4</td>
<td>The Infinite and Merton scholars</td>
<td>32</td>
</tr>
<tr>
<td>2.13</td>
<td>Analytic geometry</td>
<td>33</td>
</tr>
<tr>
<td>2.14</td>
<td>Cavalieri and Kepler</td>
<td>34</td>
</tr>
<tr>
<td>2.14.1</td>
<td>Comments</td>
<td>36</td>
</tr>
<tr>
<td>2.14.2</td>
<td>Cavalieri’s new method</td>
<td>36</td>
</tr>
<tr>
<td>2.15</td>
<td>Problem of Rectification</td>
<td>41</td>
</tr>
<tr>
<td>2.15.1</td>
<td>Neil’s rectification of algebraic curve</td>
<td>42</td>
</tr>
<tr>
<td>2.15.2</td>
<td>Comments</td>
<td>44</td>
</tr>
<tr>
<td>2.16</td>
<td>Tangent problem</td>
<td>44</td>
</tr>
</tbody>
</table>
2.16.1 Importance of tangent problem 44
2.16.2 Tangent problem by kinematic method 45
2.16.3 Tangent to a circle (Greek view) 45
2.16.4 Tangent to other curves 45
2.16.5 Secant approach and its shortcomings 46
2.16.6 Analytic geometry and Tangent construction 46
2.16.7 Method of Elimination 47
2.16.8 Comments 47
2.17 Fermat’s method and the derivative 47
2.17.1 Fermat’s pseudo -equality (adequality) method of Fermat 48
2.17.2 Fermat’s maximum or minimum method 49
2.17.3 Fermat’s tangent construction 49
2.17.4 Comments 50
2.18 Descartes’ circle method 50
2.18.1 Descartes’ inverse problem 50
2.19 Hudde’s rule 51
2.20 Infinitesimal method (Barrow’s method) 51
2.21 A comparative discussion of Descartes, Fermat and Barrow’s method 53
2.22 Area and Antiderivative 54
2.23 Interplay between Area and Tangent 55

CHAPTER-III CALCULUS OF NEWTON AND LEIBNIZ 57-105
3.1 Life sketch of Newton (1642-1727) 57
3.2 Life sketch of Leibniz (1646-1716) 59
3.3 Calculus of Newton 60
3.3.1 Tangent problem-a kinematic approach 61
3.3.2 Newton’s approach to tangent problem 62
3.4 Computation of area by antiderivative 64
3.4.1 Its significance 65
3.5 Product rule, quotient rule, chain rule and integration by substitution 65
3.6 Newton’s integral tables 69
3.7 Comments 70
3.8 Arc length computation 70
3.9 Calculus of Leibniz 71
3.9.1 Foundation of differential and integral calculus 72
3.9.2 Leibniz and symbolism 76
3.9.3 Product and quotient rules of differentiation, higher order differentials 76
3.9.4 Geometrical explanation of d(xy) 78

3.10 Characteristic triangle 79

3.10.1 Pascal’s characteristic triangle 80
3.10.2 Leibniz’ characteristic triangle 82
3.10.3 Characteristic triangle (rectification and quadrature) 82
3.10.4 Its application 84

3.11 Transmutation theorem 86

3.11.1 Its significance 87

3.12 Leibniz’ earlier symbolism 88

3.13 Sign of differentials 89

3.14 Infinitesimals 92

3.14.1 Leibniz’s idea on infinitesimals 92
3.14.2 Newton’s idea on infinitesimals 94

3.15 Criticism of infinitesimals 95

3.15.1 Berkeley’s criticism 95
3.15.2 Nieuwentjdt’s criticism 95

3.16 Areas and Antiderivatives 96

3.17 Fundamental principle of Integral calculus 97

3.18 Antiderivatives, area and distance 98

3.19 Cavalierie’s principle and the Integral 99

3.19.1 Its drawbacks 99

3.20 Leibniz’ idea of Integral 100

3.21 Fundamental theorem of integral calculus 102

3.22 Computing arc length in 17th century 103

3.23 First publication of calculus 104

3.24 Leibniz’ law of continuity 105

CHAPTER-IV HINDU THOUGHTS ON CALCULUS BEFORE NEWTON AND LEIBNIZ 106-118

4.1 Introduction 106

4.2 The Kerala School of Astronomy and Mathematics 107

4.2.1 Madhava and Yuktibhasa 108
4.2.2 Madhava’s arc-difference rule 109
4.3 Possible propagation 111
4.4 On the origin of calculus 112
4.5 Remarks 116
4.6 Hindu ideas on infinitesimals 116
4.7 Conclusion 117

CHAPTER-V EFFECT OF CONCEPTUAL ACHIEVEMENT OF CALCULUS ON ABILITY OF DOING PROBLEMS OF CALCULUS OF STUDENTS AT HIGHER SECONDARY LEVEL IN BARPETA DISTRICT OF ASSAM 119-132

5.1 Introduction 119
5.2 Methodology 120
5.3 Hypothesis 120
5.4 Analysis of data 120
5.5 Test of significance 124
5.6 Reliability 126
5.7 Validity (content validity) 127
5.8 Findings and conclusions 127
5.9 Reform of calculus content and presentation 130

CHAPTER-VI ANALYTICAL OBSERVATIONS 133-162

6.1 Four fascinating problems 133
6.2 On the failure of the Greeks 133
6.3 Key-bridge 136
6.4 Calculus of the Hindus 139
6.5 Influence of Archimedes and Al-Haytham 140
6.6 Influence of Descartes and Fermat 142
6.7 Amalgamation of problems and techniques 144
6.8 A brief analysis of Newton and Leibniz’ calculus 145
6.9 On ‘ghosts of departed quantities’ 154
6.10 Limit as a foundation of calculus 155
6.11 Analysis on calculus of the Hindus 158
6.12 Conclusion 161

BIBLIOGRAPHY 163-168