CONTENTS

ABSTRACT

Chapter 1 **INTRODUCTION** 1-42

1.1 Networking 4

1.1.1 Advantages of networking

1.1.2 Disadvantages of networking

1.1.3 Basic Components of Networking

1.1.4 Network Topology

1.1.5 Network Protocols

1.1.6 Network Models

1.1.7 Hardware and Software of Networks

1.1.8 The Network Interface Card (NIC)

1.1.9 Networking Devices

1.1.10 Networking Cables

1.1.11 Types of Networks

1.1.12 LAN Technologies

1.1.13 Basic model of Ethernet
1.2 Cabling

1.2.1 Types of Networking Cables

1.2.2 Twisted Pair Cables

1.2.3 Co-axial cable

1.2.4 Other copper cables

1.2.5 Fiber Optical Cable

1.2.6 Comparison between all types of cables

1.2.7 Cable Parameters of Interest

1.2.8 Network Cabling Troubles

1.2.9 Network Troubleshooting Equipments

1.3 Current Trend of Cabling

1.3.1 Structured Cabling System

1.3.2 Unshielded Twisted Pair Cabling

1.3.3 Self noise reduction technique of UTP cable

1.3.4 Requirements of UTP

1.3.5 Most popularly used cables

1.3.6 Technical Specifications of UTP cables

1.3.7 Some guidelines for cabling installation
Chapter 2 REVIEW AND PROBLEM DEFINITION 43-59

2.1 Review 44

2.2 Problem Definition 54

Chapter 3 CABLE CHARACTERISTICS 60-76

3.1 Components of Twisted Pair cable 61

3.2 Co-axial cable components 62

3.3 Fiber Optic cable components 63

3.4 General cable characteristics 64

3.5 Copper Cable Characteristics 66

3.5.1 Transmission line theory for copper cable

3.5.2 Secondary line constants

3.5.3 Cross-talk

3.5.4 Return Loss

3.5.5 Delay Skew

3.6 Twisted pair cable parameters 70

3.7 Co-axial cable parameters 70
3.8 Fiber Cable characteristics 71

3.9 Shielding of a cable 73

3.10 Cable Jacket 73

3.11 Physical characteristics of a cable 74

3.11.1 Wire (Conductor) Size

3.11.2 Wire Current Carrying Capacity

3.11.3 Temperature Rating

3.11.4 Bend radius and Flex radius

3.11.5 Pulling Tension

References 76

Chapter 4 POWER AND ITS EFFECT 77-110

4.1 Electrical Waves 78

4.1.1 Electrical Noise

4.1.2 Electromagnetic Interference

4.1.3 Electromagnetic Compatibility

4.1.4 Electromagnetic propagation

4.2 Sources of EMI 83

4.2.1 Classification of natural EMI sources
4.2.2 Classification of Man-made EMI sources

4.2.3 Continuous wave and transient sources

4.3 Types of EMI Errors

4.4 Techniques used for controlling EMI

 4.4.1 Grounding

 4.4.2 Shielding

 4.4.3 Filtering

4.5 Typical Noise Path

4.6 Techniques used for Elimination or Reduction of Noise

4.7 Signal Impairment

 4.7.1 Attenuation

 4.7.2 Distortion

 4.7.3 Noise

4.8 Digital Signals

4.9 Digital Data Transmission

4.10 Digital Formats

4.11 Packets

4.12 Errors in data transmission
4.12.1 Single-bit Error

4.12.2 Burst Error

4.13 Data rate limits

4.13.1 Noiseless channel

4.13.2 Noisy channel

4.14 Performance of a network

4.14.1 Bandwidth

4.14.2 Throughput

4.14.3 Latency (Delay)

4.14.4 Propagation Time

4.14.5 Transmission Time

4.14.6 Queuing Time

4.14.7 Jitter

4.15 Power Line as a Source of Noise and Cabling System

4.15.1 Conductive Coupling

4.15.2 Capacitive Coupling

4.15.3 Inductive Coupling

4.16 Protecting Cabling Systems from AC Power lines
4.16.1 Physical Separation

4.16.2 Shielding.

4.17 Cable Separation as a means of noise mitigation

4.17.1 Different levels of susceptibility for cables

4.17.2 Standards for Proper Cable Spacing

4.18 Interference between power line and communication line

4.18.1 Electromagnetic effect

4.18.2 Electrostatic effect

References

Chapter 5 STUDY AND ANALYSIS

5.1 Review of Electromagnetic Theory

5.2 Dielectric

5.2.1 Permittivity

5.2.2 Permeability

5.3 Methods used for solving field problem

5.4 Power effect modeling

5.5 Use of Network Theory

5.6 Lumped circuit components
5.6.1 Resistance (R)

5.6.2 Inductor (L)

5.6.3 Capacitor (C)

5.7 Voltage-Current Relationship of Circuit Elements 122

5.8 Coupled Circuit 123

5.8.1 Self Inductance

5.8.2 Mutual Inductance

5.8.3 Self Induction of a circuit of two parallel wires

5.8.4 Coefficient of Coupling (K)

5.9 Faraday’s Law of Electromagnetic Induction 126

5.10 Coupling Mechanisms 126

5.10.1 Capacitive Coupling

5.10.2 Inductive Coupling

References 131

Chapter 6 POWER EFFECT MODELING FOR INFRASTRUCTURE LAN 132-141

6.1 Test Set-up 133

6.2 Digital Storage Oscilloscope (DSO) 134
6.3 Cabling Standard and Color Code 136

6.4 Straight-through cables and Cross-over cables 138

6.5 Signal transmission 139

 6.5.1 Differential Signaling

 6.5.2 Pulse Amplitude Modulation (PAM)

References 140

Chapter 7 EXPERIMENTAL OBSERVATION, ANALYSIS AND RESULT 143-184

7.1 Experimental Observations 143

7.2 Analysis 179

7.3 Result 183

Chapter 8 CONCLUSIONS 186-190

8.1 Problem faced 188

8.2 Limitation of the Study 189

8.3 Further Scope of the study 189