CONTENTS

1. INTRODUCTION 1

Objectives of the present study 5

2. REVIEW OF LITERATURE 7

2.1. Historical perspective 7
2.2. Role in nature 8
2.3. Clinically important *Vibrios* 9
2.4. Pathogens to other animals in nature, aquaculture 11
2.5. Isolation and maintenance 12
2.6. Identification 13
2.6.1. Phenotypic identification: Pitfalls of classical biochemical identification and dichotomous keys 13
2.6.2. Numerical and polyphasic taxonomy 14
2.6.3. Genotypic identification 15
2.6.4. Ribotyping 15
2.6.5. Amplified Fragment Length Polymorphism (AFLP) 16
2.6.6. Fluorescence *in situ* Hybridization (FISH) 16
2.6.7. Microarrays 17
2.6.8. Multilocus Enzyme Electrophoresis and Multilocus Sequence Typing 17
2.6.9. Random Amplified Polymorphic DNA and Repetitive Extragenic Palindrome PCR 18
2.7. Current Concepts on *Vibrionaceae* classification 18
2.8. Plasticity of *Vibrio* genomes 20
2.9. Two chromosome concept 20
2.10. Known virulence factors in *Vibrios* 21
2.10.1. *Vibrio cholerae* 21
2.10.2. *Vibrio parahaemolyticus* 25
2.10.3. *Vibrio vulnificus* 26
2.10.4. *Vibrio hollisae* 28
2.10.5. *Vibrio alginolyticus* 28
2.10.6. *Vibrio mimicus* 29
2.10.7. *Vibrio fluvialis* 30
2.10.8. *Vibrio furnissii* 31
2.11. Undiscovered virulence factors 31
2.12. Environmental parameters associated with virulence 32
2.13. Viable, but non cultivable (VBNCs) 32
2.14. Horizontal Gene Transfer (HGT) among Vibrios 33
2.14.1. Cross walk among family members 34

3. MATERIALS AND METHODS 36

3.1. Isolation of Vibrios 36
3.1.1. Sources of Vibrios 36
3.1.2. Collection of samples 36
3.1.3. Preparation of serial dilutions of the sample 37
3.1.4. Medium used for isolation and purification 37
3.2. Identification of Vibrios 37
3.2.1. Morphological and biochemical characteristics 38
3.2.1.1. Gram staining 38
3.2.1.2. Oxidase test 38
3.2.1.3. Oxidation/ Fermentation reactions with glucose (MOF Test) 39
3.2.2. Ribotyping using partial 16S rRNA gene 40
3.2.2.1. DNA sequencing 41
3.2.2.2. Multiple sequence alignment 41
3.2.2.3. Phylogenetic tree construction 41
3.3. Antibiotic susceptibility test 42
3.3.1. MAR (Multiple Antibiotic Resistance) indexing 43
3.4. Polymerase Chain Reaction (PCR) 44
3.4.1. Template preparation for PCR 44
3.5. Screening for Integrons 45
3.5.1. PCR with qacEd1F and sullR 46
3.5.2. PCR with inF and inR 46
3.6. Screening for Virulence/virulence related genes 47
3.6.1. PCR with ompwF and ompwR 47
3.6.2. PCR with O1rfbF and O1rfbR 48
3.6.3. PCR with O139rfbF and O139rfbR 49
3.6.4. PCR with tcpA F and tcpA R 50
3.6.5. PCR with toxR F and toxR R 51
3.6.6. PCR with ace F and ace R 51
3.6.7. PCR with zot F and zot R 52
3.6.8. PCR with ctxA F and ctxA R 53
3.6.9. PCR with sxt F and sxt R 54
3.7. Conjugation experiments 54
3.8. Agarose gel electrophoresis 55
3.9. Suckling mouse assay 56
4. RESULTS

4.1. Isolation and identification of Vibrios

4.1.1. Isolation of Vibrios from various samples

4.2. Identification of Vibrios

4.3. Phylogenetic Tree construction

4.4. Antibiotic susceptibility test

4.5. Multiple antibiotic resistance (MAR) indexing

4.6. Screening for virulence genes by Polymerase Chain Reaction (PCR)

4.6.1. Template preparation for PCR

4.6.2. Screening for Integrons

4.6.2.1. PCR with qacEΔ1F and sulIR

4.6.2.2. PCR with inF and inR

4.6.3. Screening for Virulence/virulence related genes

4.6.3.1. PCR with ompwF and ompwR

4.6.3.2. PCR with 01rfbF and 01rfbR

4.6.3.3. PCR with tcpA F and tcpA R

4.6.3.4. PCR with toxR F and toxR R

4.6.3.5. PCR with ace F and ace R

4.6.3.6. PCR with zot F and zot R

4.6.3.7. PCR with ctxA F and ctxA R

4.6.3.8. PCR with sxt F and sxt R

4.7. Conjugation experiments

4.8. Suckling mouse assay

5. DISCUSSION

5.1. 16S rRNA gene based taxonomy

5.2. Antibiotic susceptibility tests

5.3. Screening for virulence genes by PCR

5.4. Suckling mouse assay

6. SUMMARY AND CONCLUSION

7. REFERENCES

APPENDIX I & II