P. Balasubramaniam R. Uthayakumar (Eds.)

Mathematical Modelling and Scientific Computation

International Conference, ICMMSC 2012
Gandhigram, Tamil Nadu, India, March 16-18, 2012
Proceedings

Springer
Volume Editors

P. Balasubramaniam
Department of Mathematics
Gandhigram Rural Institute - Deemed University
Gandhigram 624302, Tamil Nadu, India
E-mail: balugru@gmail.com

R. Uthayakumar
Department of Mathematics
Gandhigram Rural Institute - Deemed University
Gandhigram 624302, Tamil Nadu, India
E-mail: uthayagri@gmail.com

ISSN 1865-0929
e-ISSN 1865-0937
ISBN 978-3-642-28925-5
e-ISBN 978-3-642-28926-2
DOI 10.1007/978-3-642-28926-2

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012933232

CR Subject Classification (1998): G.1, G.2, G.3

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typsetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)
Referees

C. Alaca, Turkey J.Y. Park, South Korea
N.M.G. Al-Saidi, Iraq J. Paulraj Joseph, India
A. Biswas, India V.N. Phat, Vietnam
S. Arik, Turkey R. Rajkumar, India
T. Aravalluvan, India R. Rakkiyappan, India
A. Imre, Hungary R. Roopkumar, India
B. Prasad, India A. Roy, India
K. Balachandran, India R. Sakthivel, South Korea
H. Bao, China S. Banerjee, Italy
G.L. Chia, Malaysia S. Saravanan, India
M. Chris Monica, India S. Mukherjee, India
C. Claudio, Brazil P. Shanmugavadivu, India
W. Feng, China S. Sankar Sana, India
G. Ganesan, India S. Sivagurunathan, India
K.V. Geetha, India K. Somasundaram, India
G.V.D. Gowda, India Q. Song, China
H. Yin, Urbana S. Sivakumar, India
G. Jayalalitha, India M. Sumathi, India
T. Kalaiselvi, India S. Prasath, USA
S. Karthikeyan, India K. Shanti Swarup, India
E. Karthikeyan, India S.P. Tiwari, India
V. Kreinovich, USA I. Tsoulos, Greece
N. Kumaresan, Malaysia R.K. Upadhyay, India
O.M. Kwon, South Korea M. Valliathal, India
N.F. Law, Hong Kong V. Veeramani, Oman
G. Mahadevan, India C. Vidhya, India
S. Marshal Anthoni, India S. Vimala, India
M. Nawi Nazri, Malaysia D. Vinayagam, India
S. Muralisankar, India A.V.A. Kumar, India
P. Muthukumar, India W. Wang, China
G. Nagamani, India X. Li, China
V. Novak, Czech Republic X. Zhang, China
B.B. Pal, India
J.H. Park, South Korea
Table of Contents

Mathematical Modelling

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of Approximation of Function $f \in H_p^{(w)}$ Class in Generalized Hölder Metric by Matrix Means</td>
<td>1</td>
</tr>
<tr>
<td>Uday Singh and Smita Sonker</td>
<td></td>
</tr>
<tr>
<td>Angle Change of Plane Curve</td>
<td>11</td>
</tr>
<tr>
<td>Xiao Han, Baozeng Chu, and Liangping Qi</td>
<td></td>
</tr>
<tr>
<td>On Faintly SP-θ (Semi-Pre-θ)-Continuous Functions</td>
<td>22</td>
</tr>
<tr>
<td>Alaa. M.F. AL. Jumaili and Xiao-Song Yang</td>
<td></td>
</tr>
<tr>
<td>On θ-Closed Spaces and θ-Continuous Functions</td>
<td>32</td>
</tr>
<tr>
<td>Alaa. M.F. AL. Jumaili and Xiao-Song Yang</td>
<td></td>
</tr>
<tr>
<td>On θ-Irresolute Functions</td>
<td>47</td>
</tr>
<tr>
<td>Alaa. M.F. AL. Jumaili and Xiao-Song Yang</td>
<td></td>
</tr>
<tr>
<td>On the Strictness of a Bound for the Diameter of Cayley Graphs</td>
<td>54</td>
</tr>
<tr>
<td>Generated by Transposition Trees</td>
<td></td>
</tr>
<tr>
<td>Ashwin Ganesan</td>
<td></td>
</tr>
<tr>
<td>Power Graphs of Finite Groups of Even Order</td>
<td>62</td>
</tr>
<tr>
<td>Sripurna Chattopadhyay and Pratima Panigrahi</td>
<td></td>
</tr>
<tr>
<td>Global Vertex-Edge Domination Sets in Total Graph and Product</td>
<td>68</td>
</tr>
<tr>
<td>Graph of Path P_n Cycle C_n</td>
<td></td>
</tr>
<tr>
<td>S. Chitra and R. Sattanathan</td>
<td></td>
</tr>
<tr>
<td>Incomparability Graphs of Lattices</td>
<td>78</td>
</tr>
<tr>
<td>Meenakshi Wasodikar and Pradnya Survase</td>
<td></td>
</tr>
<tr>
<td>A New Characterization of Paired Domination Number of a Graph</td>
<td>86</td>
</tr>
<tr>
<td>G. Mahadevan, A. Nagarajan, A. Selvam, and A. Rajeswari</td>
<td></td>
</tr>
<tr>
<td>Coding the Vertices of a Graph with Rosenboom-Tsfasman Metric</td>
<td>97</td>
</tr>
<tr>
<td>R. Rajkumar</td>
<td></td>
</tr>
<tr>
<td>Application of Fuzzy Programming Method for Solving Nonlinear Fractional Programming Problems with Fuzzy Parameters</td>
<td>104</td>
</tr>
<tr>
<td>Animesh Biswas and Koushik Bose</td>
<td></td>
</tr>
<tr>
<td>Solving Bottleneck Bi-criteria Transportation Problems</td>
<td>114</td>
</tr>
<tr>
<td>D. Anuradha and P. Pandian</td>
<td></td>
</tr>
</tbody>
</table>
A New Characterization of Paired Domination Number of a Graph

G. Mahadevan1, A. Nagarajan2, A. Selvam3, and A. Rajeswari4

1Department of Mathematics, Anna University of Technology Tirunelveli, Tirunelveli-627 002
gmaha2003@yahoo.co.in
2Department of Mathematics, V. O. Chidambaram College, Tuticorin- 628 008
nagarajan.voc@gmail.com
3Department of Mathematics, V.H.N.S.N. College, Virudhunagar-626 001
selvam_avadayappan@yahoo.co.in
4Aarupadai Veedu Institute of Technology, Palayanoor, Chennai -603 104
rajeswarivenket@yahoo.com

Abstract. Paired domination is a relatively interesting concept introduced by Teresa W. Haynes [9] recently with the following application in mind. If we think of each vertex \(s \in S \), as the location of a guard capable of protecting each vertex dominated by \(S \), then for a paired domination the guards location must be selected as adjacent pairs of vertices so that each guard is assigned one other and they are designated as a backup for each other. A set \(S \subseteq V \) is a paired dominating set if \(S \) is a dominating set of \(G \) and the induced sub graph \(<S> \) has a perfect matching. The paired domination number \(\gamma_{pr}(G) \) is the minimum cardinality taken over all paired dominating sets in \(G \). The minimum number of colours required to colour all the vertices so that adjacent vertices do not receive the same colour and is denoted by \(\chi(G) \). In this paper we characterize the class of all graphs whose sum of paired domination number and chromatic number equals to \(2n - 7 \), for any \(n \geq 4 \).

Keywords: Paired domination number, Chromatic number.

AMS subject Classification: 05C (primary).

1 Introduction

Throughout this paper, by a graph we mean a finite, simple, connected and undirected graph \(G(V, E) \). For notations and terminology, we follow [11]. The number of vertices in \(G \) is denoted by \(n \). Degree of a vertex \(v \) is denoted by \(\deg(v) \). We denote a cycle on \(n \) vertices by \(C_n \), a path of \(n \) vertices by \(P_n \), complete graph on \(n \) vertices by \(K_n \). If \(S \) is a subset of \(V \), then \(<S> \) denotes the vertex induced sub graph of \(G \) induced
A New Characterization of Paired Domination Number of a Graph

by S. A subset S of V is called a dominating set of G if every vertex in V-S is adjacent to at least one vertex in S. The domination number \(\gamma(G) \) of G is the minimum cardinality of all such dominating sets in G. A dominating set S is called a total dominating set if the induced subgraph \(<S>\) has no isolated vertices. The minimum cardinality taken over all total dominating sets in G is called the total domination number and is denoted by \(\gamma_t(G) \). One can get a comprehensive survey of results on various types of domination number of a graph in [10]. The chromatic number \(\chi(G) \) is defined as the minimum number of colors required to color all the vertices such that adjacent vertices receive the same color.

Recently many authors have introduced different types of domination parameters by imposing conditions on the dominating set and/or its complement. Teresa W. Haynes [9] introduced the concept of paired domination number of a graph. If we think of each vertex \(s \in S \), as the location of a guard capable of protecting each vertex dominated by S, then for domination a guard protects itself, and for total domination each guard must be protected by another guard. For a paired domination the guards location must be selected as adjacent pairs of vertices so that each guard is assigned one other and they are designated as a backup for each other. Thus a paired dominating set S with matching M is a dominating set \(S = \{v_1, v_2, v_3, \ldots, v_{2t}, v_{2t+1}\} \) with independent edge set \(M = \{e_1, e_2, e_3, \ldots, e_t\} \) where each edge \(e_i \) is incident to two vertices of \(S \), that is \(M \) is a perfect matching in \(<S>\). A set \(S \subseteq V \) is a paired dominating set if \(S \) is a dominating set of G and the induced subgraph \(<S>\) has a perfect matching. The paired domination number \(\gamma_{pr}(G) \) is the minimum cardinality taken over all paired dominating sets in G.

Several authors have studied the problem of obtaining an upper bound for the sum of a domination parameter and a graph theoretic parameter and characterized the corresponding extremal graphs. In [8], Paulraj Joseph J and Arumugam S proved that \(\gamma + \kappa \leq p \), where \(\kappa \) denotes the vertex connectivity of the graph. In [7], Paulraj Joseph J and Arumugam S proved that \(\gamma_\ell + \chi \leq p + 1 \) and characterized the corresponding extremal graphs. They also proved similar results for \(\gamma \) and \(\chi \). In [6], Mahadevan G Selvam A, Iravithul Basira A characterized the extremal of graphs for which the sum of the complementary connected domination number and chromatic number. In [3], Paulraj Joseph J and Mahadevan G proved that \(\gamma_{pr} + \chi \leq 2n - 1 \), and characterized the corresponding extremal graphs of order up to \(2n - 6 \). Motivated by the above results, in this paper we characterize all graphs for which \(\gamma_{pr}(G) + \chi(G) = 2n - 7 \) for any \(n \geq 4 \).

2 Main Result

We use the following preliminary results and notations for our consequent characterization:

Theorem 2.1[4] For any connected graph G of order \(n \geq 3 \), \(\gamma_{pr}(G) \leq n - 1 \) and equality holds if and only if \(G = C_3, C_5 \) or subdivided star \(S(K_{1,n}) \).
Notation 2.2. $C_3(n_1 P_{m_1}, n_2 P_{m_2}, n_3 P_{m_3})$ is a graph obtained from C_3 by attaching n_1 times the pendant vertex of P_{m_1} (Path on m_1 vertices) to a vertex u_i of C_3 and attaching n_2 times the pendant vertex of P_{m_2} (Path on m_2 vertices) to a vertex u_j for $i \neq j$ of C_3 and attaching n_3 times the pendant vertex of P_{m_3} (Path on m_3 vertices) to a vertex u_k for $i \neq j \neq k$ of C_3.

Notation 2.3. $C_3(u(P_{m_1}, P_{m_2}))$ is a graph obtained from C_3 by attaching the pendant vertex of P_{m_1} (Path on m_1 vertices) and the pendant vertex of P_{m_2} (Paths on m_2 vertices) to any vertex u of C_3.

Notation 2.4. $K_5(n_1 P_{m_1}, n_2 P_{m_2}, n_3 P_{m_3}, n_4 P_{m_4}, n_5 P_{m_5})$ is a graph obtained from K_5 by attaching n_1 times the pendant vertex of P_{m_1} (Paths on m_1 vertices) to a vertex u_i of K_5 and attaching n_2 times the pendant vertex of P_{m_2} (Paths on m_2 vertices) to a vertex u_j for $i \neq j$ of K_5 and attaching n_3 times the pendant vertex of P_{m_3} (Paths on m_3 vertices) to a vertex u_k for $i \neq j \neq k$ of K_5 and attaching n_4 times the pendant vertex of P_{m_4} (Paths on m_4 vertices) to a vertex u_l for $i \neq j \neq k \neq l$ of K_5 and attaching n_5 times the pendant vertex of P_{m_5} (Paths on m_5 vertices) to a vertex u_m for $i \neq j \neq k \neq l \neq m$ of K_5.

Notation 2.5. $C_3(P_n)$ is the graph obtained from C_3 by attaching the pendant edge of P_n to any one vertices of C_3 and $K_n(P_m)$ is the graph obtained from K_n by attaching the pendant edge of P_m to any one vertices of K_n. For $n \leq p$, $K_p(n)$ is the graph obtained from K_p by adding a new vertex and join it with n vertices of K_p. $C_3(K_{1,n})$ is the graph obtained from C_3, by attaching the root vertex of $K_{1,n}$ to any one vertex of C_3.

Theorem 2.6. For any connected graph G of order n ($n \geq 3$), $y_p(G) + \chi(G) = 2n - 7$ if and only if $G \equiv C_3(P_3), C_5(K_{1,3}), C_5(2P_2, P_2), C_5(2P_2, P_2, 0), C_5(2P_2, 0, 0), C_5(3P_3, 0), C_5(P_3, P_2), C_5(P_3, P_2, 0), C_5(3P_3, P_3, 0), C_5(u(P_4, P_2)), C_5(u(P_2, P_2)), K_5(P_4), K_5(P_2), K_5(1), K_5(2), K_5(3), K_5(4), K_5(5), K_5(6), K_5(P_2, P_2, P_2, 0, 0), K_5(P_3, P_2, 0, 0, 0), K_5(P_2, P_2, 0, 0, 0), K_5$ or any one of the graphs shown in Fig. 1.
Fig. 1. (Continued)
Proof. If G is any one of the graphs stated in the theorem, then it can be verified that $\gamma_{pr}(G) + \chi(G) = 9 = 2n - 7$. Conversely, let $\gamma_{pr}(G) + \chi(G) = 2n - 7$. Then the various possible cases are (i) $\gamma_{pr}(G) = n - 1$ and $\chi(G) = n - 6$ (ii) $\gamma_{pr}(G) = n - 2$ and $\chi(G) = n - 5$ (iii) $\gamma_{pr}(G) = n - 3$ and $\chi(G) = n - 4$ (iv) $\gamma_{pr}(G) = n - 4$ and $\chi(G) = n - 3$ (v) $\gamma_{pr}(G) = n - 5$ and $\chi(G) = n - 2$ (vi) $\gamma_{pr}(G) = n - 6$ and $\chi(G) = n - 1$ (vii) $\gamma_{pr}(G) = n - 7$ and $\chi(G) = n$.
Case i. $\gamma_{pr} = n - 1$ and $\chi = n - 6$.

Since $\gamma_{pr} = n - 1$, by theorem, 2.1 $G \cong C_3, C_5$, or $S(K_{1,3})$. Then $\chi = 2$ or 3. If $\chi = 2$, $n = 8$, which is a contradiction. If $\chi = 3$, $n = 9$, which is a contradiction. Hence no graph exists.

Case ii. $\gamma_{pr} = n - 2$ and $\chi = n - 5$.

Since $\chi(G) = n - 5$, G contains a clique K on $n - 5$ vertices (or) does not contain a clique K on $n - 5$ vertices. By all the various possible cases, it can be verified that no graph exists satisfying the hypothesis.

Case iii. $\gamma_{pr} = n - 3$ and $\chi = n - 4$.

Since $\chi = n - 4$, G contains a clique K on $n - 4$ vertices or does not contain a clique K on $n - 4$ vertices. Let G contain a clique K on $n - 4$ vertices. Let $S = V(G) - V(K) = \{v_1, v_2, v_3, v_4\}$. Then the induced subgraph $<S>$ has the following possible cases: $<S> = K_4, \overline{K}_4, P_4, C_4, K_{1,3}, P_3 \cup K_2, K_2 \cup K_3, K_3 \cup K_2, K_2 \cup \overline{K}_2, K_4 - \{e\}, C_3(1,0,0)$. If $<S> = K_4$, then it can be verified that no graph exists.

Sub case i. $<S> = \overline{K}_4$. Let $\{v_1, v_2, v_3, v_4\}$ be the vertices of \overline{K}_4. By the various possible cases, the only graph exists in this case is $C_3(2P_2, P_2, P_2)$.

Sub case ii. $<S> = P_4$.

Let $\{v_1, v_2, v_3, v_4\}$ be the vertices of P_4. Since G is connected, there exists a vertex u_1 in K_{n-4} which is adjacent to v_1 (or v_4) (or) v_2 (or v_3). Let u_1 be adjacent to v_1, then $\{v_1, v_2, v_3, v_4\}$ forms a γ_{pr} - set of G so that $\gamma_{pr} = 4$ and $n = 7$. Hence $K = K_3 = \langle u_1, u_2, u_3 \rangle$. If u_1 is adjacent to v_2, then $\{u_1, u_2, v_2, v_3\}$ forms a γ_{pr} - set of G so that $\gamma_{pr} = 4$ and $n = 7$. Hence $K = K_3 = \langle u_1, u_2, u_3 \rangle$. Let u_1 be adjacent to v_2 and u_2 be adjacent to v_3. If $\deg(v_1) = \deg(v_4) = 1$, $\deg(v_2) = 3$, $\deg(v_3) = 2$, then $G \cong G_1$. Let u_1 be adjacent to v_2 and u_3 be adjacent to v_3. If $\deg(v_1) = \deg(v_4) = 1$, $\deg(v_2) = \deg(v_3) = 3$, then $G \cong G_3$. Let u_1 be adjacent to v_2 and v_3, and u_3 be adjacent to v_3. If $\deg(v_1) = \deg(v_4) = 1$, $\deg(v_2) = 3$, $\deg(v_3) = 4$, then $G \cong G_4$. All the remaining cases are not possible.

Sub case iii. $<S> = C_4$.

Let $\{v_1, v_2, v_3, v_4\}$ be the vertices of C_4. Since G is connected, there exists a vertex u_1 in K_{n-4} which is adjacent to v_1. Let u_i for some i in K_{n-4}, be adjacent to v_1 and u_i for $i \neq j$, then $\{u_i, u_j, v_1, v_4\}$ forms a γ_{pr} - set of G so that $\gamma_{pr} = 4$ and $n = 7$. Hence $K = K_3 = \langle u_1, u_2, u_3 \rangle$. If u_1 is adjacent to v_1, then $\deg(v_1) = 3$, and so $G \cong G_5$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_2. If $\deg(v_1) = \deg(v_2) = 3$, then $G \cong G_6$. Let u_1 be adjacent to v_1 and u_3 be adjacent to v_2. If $\deg(v_1) = \deg(v_2) = 3$, then $G \cong G_7$.
Sub case iv. \(<S> = K_{1,3}\).

Let \(v_1\) be the root vertex and \(v_2, v_3, v_4\) are adjacent to \(v_1\). Since \(G\) is connected, there exists a vertex \(u_i\) in \(K_{n-4}\) which is adjacent to \(v_1\) (or any one of \(\{v_2, v_3, v_4\}\) and \(v_4\). Let \(u_i\) for some \(i\) in \(K_{n-4}\) be the vertex adjacent to \(v_1\), then \(\{u_i, v_1\}\) is a \(\gamma_p\)-set of \(G\) so that \(\gamma_p = 2\) and \(n = 5\), which is a contradiction. Hence no such graph exists. Since \(G\) is connected, there exists a vertex \(u_i\) in \(K_{n-4}\) which is adjacent to any one of \(\{v_2, v_3, v_4\}\). Then \(u_i\) for some \(i\) is adjacent to \(v_2\). In this case, \(\{u_i, u_j, v_1, v_2\}\) is an \(\gamma_p\)-set of \(G\) so that \(\gamma_p = 4\) and \(n = 7\), and hence \(K = K_3 = \langle u_1, u_2, u_3 \rangle\). Let \(u_i\) be adjacent to \(v_2\). If \(\deg(v_1) = 3, \deg(v_2) = \deg(v_4) = 1, \deg(v_2) = 3\), then \(G \cong G_6\). Let \(u_1\) be adjacent to \(v_2\) and \(v_3\). If \(\deg(v_1) = 3, \deg(v_2) = \deg(v_3) = 2, \deg(v_4) = 1\), then \(G \cong G_9\). Let \(u_1\) be adjacent to \(v_2\) and \(u_2\) be adjacent to \(v_4\). If \(\deg(v_1) = 3, \deg(v_2) = \deg(v_4) = 2, \deg(v_3) = 1\), then \(G \cong G_{10}\).

Sub case v. \(<S> = K_3 \cup K_1\).

Let \(v_1, v_2\) and \(v_3\) be the vertices of \(K_3\) and \(v_4\) be the vertex of \(K_1\). Since \(G\) is connected, there exists a vertex \(u_i\) in \(K_{n-4}\) which is adjacent to any one of \(\{v_1, v_2, v_3\}\) and \(\{v_4\}\). In this case \(\{u_i, v_1\}\) is a \(\gamma_p\)-set of \(G\), so that \(\gamma_p = 2\) and \(n = 5\), which is a contradiction. Hence no graph exists. Since \(G\) is connected, there exists a vertex \(u_i\) in \(K_{n-4}\) which is adjacent to \(v_2\) and \(u_i\) for \(i \neq j\) is adjacent to \(v_4\). In this case, \(\{u_i, u_j, v_1, v_2\}\) is a \(\gamma_p\)-set of \(G\) so that \(\gamma_p = 4\) and \(n = 7\). Hence \(K = K_3 = \langle u_1, u_2, u_3 \rangle\). Let \(u_i\) be adjacent to \(v_2\) and \(u_1\) be adjacent to \(v_4\). If \(\deg(v_1) = \deg(v_2) = 3, \deg(v_3) = 1\), then \(G \cong G_{11}\). Since \(G\) is connected, there exists a vertex \(u_i\) in \(K_{n-4}\) which is adjacent to \(v_1\) and \(v_3\) and \(v_4\) is adjacent to \(v_4\). In this case, \(\{u_i, v_1, v_2, v_4\}\) is a \(\gamma_p\)-set of \(G\) so that \(\gamma_p = 4\) and \(n = 7\), and hence \(K = K_3 = \langle u_1, u_2, u_3 \rangle\). Let \(u_i\) be adjacent to \(v_1\) and \(u_1\) be adjacent to \(v_4\). If \(\deg(v_1) = \deg(v_2) = 2, \deg(v_3) = \deg(v_4) = 1\), then \(G \cong C_3(P_4, P_2)\). Since \(G\) is connected, there exists a vertex \(u_i\) in \(K_{n-4}\) which is adjacent to \(v_1\) and \(v_4\). In this case, \(\{u_i, v_1, v_2, v_4\}\) is a \(\gamma_p\)-set of \(G\) so that \(\gamma_p = 2\) and \(n = 5\), which is a contradiction. Hence no graph exists. Since \(G\) is connected, there exists a vertex \(u_i\) in \(K_{n-4}\) which is adjacent to \(v_2\) and \(u_j\) for \(i \neq j\) is adjacent to \(v_4\). In this case, \(\{u_i, u_j, v_2, v_4\}\) is a \(\gamma_p\)-set of \(G\) so that \(\gamma_p = 4\) and \(n = 7\), and hence \(K = K_3 = \langle u_1, u_2, u_3 \rangle\). Let \(u_i\) be adjacent to \(v_2\) and \(u_3\) be adjacent to \(v_4\). If \(\deg(v_1) = \deg(v_3) = \deg(v_4) = 1, \deg(v_2) = 3\), then \(G \cong G_{19}\). Let \(u_i\) be adjacent to \(v_2\) and \(u_3\) be adjacent to \(v_2\) and \(u_3\) be adjacent to \(v_4\). If \(\deg(v_1) = \deg(v_3) = \deg(v_4) = 1, \deg(v_2) = 4\), then \(G \cong G_{10}\).
Sub case vii. \(<S> = K_2 \cup K_2 \).

Let \(v_1 \) and \(v_2 \) be the vertices of \(K_2 \) and \(v_3, v_4 \) be the vertices of \(K_2 \). Since \(G \) is connected, there exists a vertex \(u_i \) in \(K_{n-4} \) which is adjacent to any one of \(\{v_1, v_2\} \) and any one of \(\{v_3, v_4\} \). Let \(u_i \) be adjacent to \(v_1 \) and \(v_3 \). In this case \(\{u_i, v_1, v_2, v_3\} \) forms a \(\gamma'_p \)-set of \(G \) so that \(\gamma'_p = 4 \) and \(n = 7 \). Hence \(K = K_3 = \langle u_1, u_2, u_3 \rangle \). Let \(u_1 \) be adjacent to \(v_1 \) and \(v_3 \). If \(\deg(v_1) = \deg(v_3) = 2 \), then \(G \cong C_6(2P_3, 0, 0) \). Let \(u_1 \) be adjacent to \(v_3 \) and \(v_4 \) and let \(u_2 \) be adjacent to \(v_1 \) and \(u_3 \) be adjacent to \(v_2 \). If \(\deg(v_1) = \deg(v_2) = \deg(v_3) = \deg(v_4) = 2 \), then \(G \cong G_6 \). Since \(G \) is connected, there exists a vertex \(u_i \) in \(K_{n-4} \) which is adjacent to \(v_1 \) and there exists \(u_j \) for \(i \neq j \), is adjacent to \(v_3 \). In this case, \(\{u_i, u_j, v_1, v_3\} \) is a \(\gamma'_p \)-set of \(G \) so that \(\gamma'_p = 4 \) and \(n = 7 \), and hence \(K = K_3 = \langle u_1, u_2, u_3 \rangle \). Let \(u_1 \) be adjacent to \(v_3 \) and \(u_2 \) be adjacent to \(v_1 \). If \(\deg(v_1) = \deg(v_3) = 2 \), then \(G \cong G_{15} \). Let \(u_1 \) be adjacent to \(v_3 \) and \(u_2 \) be adjacent to \(v_1 \) and \(v_3 \). If \(\deg(v_1) = 2, \deg(v_2) = \deg(v_4) = 3 \), then \(G \cong G_{16} \). Let \(u_1 \) be adjacent to \(v_3 \), \(u_2 \) be adjacent to \(v_1 \) and \(v_3 \), and let \(u_3 \) be adjacent to \(v_4 \). If \(\deg(v_1) = 2, \deg(v_2) = 1 \), then \(G \cong G_{17} \). Let \(u_1 \) be adjacent to \(v_3 \) and \(v_4 \), \(u_2 \) be adjacent to \(v_1 \) and let \(u_3 \) is adjacent to \(v_1 \). If \(\deg(v_1) = 3, \deg(v_2) = \deg(v_4) = 2 \), then \(G \cong G_{18} \). Let \(u_1 \) be adjacent to \(v_3 \) and \(u_2 \) be adjacent to \(v_1 \) and \(u_3 \) be adjacent to \(v_1 \) and \(v_2 \). If \(\deg(v_1) = 3, \deg(v_2) = \deg(v_3) = 2 \), then \(G \cong G_{19} \).

Sub case viii. \(<S> = K_2 \cup \overline{K}_2 \).

Let \(v_1 \) and \(v_2 \) be the vertices of \(\overline{K}_2 \) and \(v_3, v_4 \) be the vertices of \(K_2 \). Since \(G \) is connected, there exists a vertex \(u_i \) in \(K_{n-4} \) which is adjacent to \(v_1 \) and \(v_2 \) and any one of \(\{v_3, v_4\} \). Let \(u_i \) be adjacent to \(v_1 \), \(v_2 \), \(v_3 \). In this case \(\{u_i, v_3\} \) forms a \(\gamma'_p \)-set of \(G \), so that \(\gamma'_p = 2 \) and \(n = 5 \), which is a contradiction. Hence no graph exists. Since \(G \) is connected, there exists a vertex \(u_i \) in \(K_{n-4} \) which is adjacent to \(v_1 \) and there exists \(u_j \) for \(i \neq j \), is adjacent to \(v_2 \) and \(v_3 \). In this case, \(\{u_i, u_j, u_k, v_1\} \) for \(i \neq j \neq k \) forms a \(\gamma'_p \)-set of \(G \) so that \(\gamma'_p = 4 \) and \(n = 7 \). Hence \(K = K_3 = \langle u_1, u_2, u_3 \rangle \). Let \(u_1 \) be adjacent to \(v_2 \) and \(u_3 \) be adjacent to \(v_1 \). If \(\deg(v_1) = \deg(v_2) = \deg(v_4) = 2 \), then \(G \cong G_{20} \). Since \(G \) is connected, there exists a vertex \(u_i \) in \(K_{n-4} \) which is adjacent to \(v_1 \) and there exists \(u_j \) for \(i \neq j \), is adjacent to \(v_2 \) and \(u_k \) for \(i \neq j \neq k \) is adjacent to \(v_3 \). In this case, \(\{u_i, u_j, u_k, v_3\} \) for \(i \neq j \neq k \) forms a \(\gamma'_p \)-set of \(G \) so that \(\gamma'_p = 4 \) and \(n = 7 \). Hence \(K = K_3 = \langle u_1, u_2, u_3 \rangle \). Let \(u_1 \) be adjacent to \(v_2 \) and \(u_2 \) be adjacent to \(v_1 \) and \(u_3 \) be adjacent to \(v_2 \). If \(\deg(v_1) = \deg(v_2) = \deg(v_3) = 2 \), then \(G \cong G_{21} \). Let \(u_1 \) be adjacent to \(v_2 \) and \(v_3 \), \(u_2 \) be adjacent to \(v_1 \) and \(u_3 \) be adjacent to \(v_3 \). If \(\deg(v_1) = \deg(v_2) = \deg(v_4) = 1 \), then \(G \cong G_{22} \). Let \(u_1 \) be adjacent to \(v_2 \), \(u_2 \) be adjacent to \(v_1 \) and \(v_2 \) and let \(u_3 \) is adjacent to \(v_1 \) and \(v_3 \). If \(\deg(v_1) = 2, \deg(v_2) = \deg(v_3) = 2 \), then \(G \cong G_{23} \).
Sub case ix. \(<S> = K_4 - \{e\}\).

Let \(v_1, v_2, v_3, v_4\) be the vertices of \(K_4\). Let \(e\) be any one of the edges inside the cycle \(C_4\). Since \(G\) is connected, there exists a vertex \(u_1\) in \(K_{n-4}\) which is adjacent to \(v_1\). In this case \(\{u_1, v_1\}\) is a \(\gamma_{pr}\)-set of \(G\), so that \(\gamma_{pr} = 2\) and \(n = 5\), which is a contradiction. Hence no graph exists. Since \(G\) is connected, there exists a vertex \(u_1\) in \(K_{n-4}\) which is adjacent to \(v_2\). In this case, \(\{u_2, v_2\}\) is a \(\gamma_{pr}\)-set of \(G\) so that \(\gamma_{pr} = 4\) and \(n = 7\). Hence \(K = K_3 = \langle u_1, u_2, u_3 \rangle\). Let \(u_1\) be adjacent to \(v_2\). If \(\text{deg}(v_1) = \text{deg}(v_2) = \text{deg}(v_3) = 3\), then \(G \cong G_{24}\). Let \(u_1\) be adjacent to \(v_2\) and let \(u_2\) adjacent to \(v_4\). If \(\text{deg}(v_1) = 3\), \(\text{deg}(v_2) = 3\), \(\text{deg}(v_3) = 3\), \(\text{deg}(v_4) = 3\), then \(G \cong G_{25}\). Let \(u_1\) be adjacent to \(v_2\) and let \(u_3\) be adjacent to \(v_2\). If \(\text{deg}(v_1) = \text{deg}(v_3) = 3\), \(\text{deg}(v_2) = 4\), \(\text{deg}(v_4) = 2\), then \(G \cong G_{26}\).

Sub case x. \(<S> = C_3(1, 0, 0)\).

Let \(v_1, v_2, v_3\) be the vertices of \(C_3\) and let \(v_4\) be adjacent to \(v_1\). Since \(G\) is connected, there exists a vertex \(u_1\) in \(K_{n-4}\) which is adjacent to \(v_2\) (or) there exists a vertex \(u_1\) in \(K_{n-4}\) which is adjacent to \(v_1\) (or) there exists a vertex \(u_1\) in \(K_{n-4}\) which is adjacent to \(v_4\). In all the cases, by various arguments, it can be verified that \(G \cong G_{27}, G_{28}, G_{29}, G_{30}, \ldots\). If \(G\) does not contain a clique \(K\) on \(n - 4\) vertices, then it can be verified that no new graph exists.

Case iv. \(\gamma_{pr} = n - 4\) and \(\chi = n - 3\).

Since \(\chi = n - 3\), \(G\) contains a clique \(K\) on \(n - 3\) vertices or does not contain a clique \(K\) on \(n - 3\) vertices. Let \(S = V(G) - V(K) = \{v_1, v_2, v_3\}\). Then the induced subgraph \(<S>\) has the following possible cases. \(<S> = K_3, \overline{K}_3, P_3, K_2 \cup K_1\).

Sub case i. \(<S> = K_3\).

Let \(v_1, v_2, v_3\) be the vertices of \(K_3\). Since \(G\) is connected, there exists a vertex \(u_1\) in \(K_{n-3}\) which is adjacent to any one of \(\{v_1, v_2, v_3\}\). Let \(u_1\) be adjacent to \(v_2\), then \(\{u_1, v_2\}\) is a \(\gamma_{pr}\)-set of \(G\), so that \(\gamma_{pr} = 2\) and \(n = 6\). Hence \(K = K_3 = \langle u_1, u_2, u_3 \rangle\). Let \(u_1\) be adjacent to \(v_2\) and let \(u_2\) adjacent to \(v_3\). If \(\text{deg}(v_1) = \text{deg}(v_3) = 2\), \(\text{deg}(v_2) = 3\), then \(G \cong G_{32}\). Let \(u_1\) be adjacent to \(v_1\) and \(v_2\). If \(\text{deg}(v_1) = \text{deg}(v_2) = 3\), \(\text{deg}(v_3) = 2\), then \(G \cong G_{33}\). Let \(u_1\) be adjacent to \(v_2\), \(u_2\) be adjacent to \(v_1\) and let \(u_3\) be adjacent to \(v_3\). If \(\text{deg}(v_1) = \text{deg}(v_2) = \text{deg}(v_3) = 3\), then \(G \cong G_{34}\). Let \(u_1\) be adjacent to both the vertices \(v_1, v_2, u_2\) be adjacent to \(v_1\) and let \(u_3\) be adjacent to \(v_3\). If \(\text{deg}(v_1) = 4\), \(\text{deg}(v_2) = \text{deg}(v_3) = 3\), then \(G \cong G_{35}\).

Sub case ii. \(<S> = \overline{K}_3\).

Let \(v_1, v_2, v_3\) be the vertices of \(\overline{K}_3\). Since \(G\) is connected, one of the vertices of \(K_{n-3}\) say \(u_1\) is adjacent to all the vertices of \(S\) (or) \(u_1\) be adjacent to \(v_1, v_2\) and \(u_1\) be adjacent to \(v_3\) for \(i \neq j\) (or) \(u_1\) be adjacent to \(v_1\) and \(u_1\) be adjacent to \(v_2\) and \(u_1\) be adjacent to \(v_3\) for \(i \neq j \neq k\). If \(u_1\) for some \(i\), \(v\) for some \(v\) in \(K_{n-3}\), is a \(\gamma_{pr}\)-set of \(G\), so that \(\gamma_{pr} = 2\) and \(n = 6\). Hence \(K = K_3 = \langle u_1, u_2, u_3 \rangle\). If \(u_1\) is adjacent to all the vertices \(v_1, v_2, v_3\), then \(G \cong C_3(K_{1, 3})\). Since \(G\) is connected, there
exists a vertex \(u_i \) in \(K_{n-3} \) is adjacent to \(v_1 \) and \(u_j \) for \(i \neq j \) is adjacent to \(v_2 \) and \(v_3 \), then \(\{u_i, u_j\} \) is a \(\gamma_{pr} \) set of \(G \), so that \(\gamma_{pr} = 2 \) and \(n = 6 \). Hence \(K = K_3 = <u_1, u_2, u_3> \). Let \(u_1 \) be adjacent to \(v_1 \) and \(v_2 \) and let \(u_3 \) be adjacent to \(v_3 \). If \(\deg(v_1) = \deg(v_2) = \deg(v_3) = 1 \) then \(G \cong C_3(2P_2, P_2, 0) \). Since \(G \) is connected, there exists a vertex \(u_i \) in \(K_{n-3} \) is adjacent to \(v_1 \) and \(u_j \) for \(i \neq j \) is adjacent to \(v_2 \) and \(u_k \) for \(i \neq j \neq k \) in \(K_{n-3} \) is adjacent to \(v_3 \), then \(\{u_i, u_j, u_k, v\} \) for some \(v \) in \(K_{n-3} \) is a \(\gamma_{pr} \) set of \(G \), so that \(\gamma_{pr} = 4 \) and \(n = 8 \). Hence \(K = K_4 = <u_1, u_2, u_3, u_4, u_5> \). Let \(u_1 \) be adjacent to \(v_2 \), \(u_3 \) be adjacent to \(v_3 \) and let \(u_5 \) be adjacent to \(v_1 \). If \(\deg(v_1) = \deg(v_2) = \deg(v_3) = 1 \) then \(G \cong K_5(P_2, P_2, P_2, 0, 0) \).

Sub case 3. \(<S> = P_3 \).

Let \(v_1, v_2, v_3 \) be the vertices of \(P_3 \). Since \(G \) is connected, there exists a vertex \(u_i \) in \(K_{n-3} \) which is adjacent to \(v_1 \) (or equivalently \(v_3 \)) or \(v_2 \). If \(u_i \) is adjacent to \(v_2 \), then \(\{u_i, v_2\} \) is a \(\gamma_{pr} \) set of \(G \), so that \(\gamma_{pr} = 2 \) and \(n = 6 \). Hence \(K = K_3 = <u_1, u_2, u_3> \). Let \(u_1 \) be adjacent to \(v_2 \). If \(\deg(v_2) = 3, \deg(v_1) = \deg(v_3) = 1 \), then \(G \cong G_{36} \). By increasing the degrees of the vertices, it can be verified that \(G \cong G_{37}, G_{38} \). Since \(G \) is connected, there exists a vertex \(u_i \) in \(K_{n-3} \) is adjacent to \(v_1 \) then \(\{u_i, u_j, v_1, v_2\} \) for \(i \neq j \) is a \(\gamma_{pr} \) set of \(G \), so that \(\gamma_{pr} = 4 \) and \(n = 8 \). Hence \(K = K_5 = <u_1, u_2, u_3, u_4, u_5> \). Let \(u_1 \) be adjacent to \(v_1 \). If \(\deg(v_1) = \deg(v_2) = 2, \deg(v_3) = 1 \), then \(G \cong K_5(P_2) \). By increasing the degrees of the vertices, it can be verified that \(G \cong G_{39}, G_{40} \).

Sub case 4. \(<S> = K_2 \cup K_1 \).

Let \(v_1, v_2 \) be the vertices of \(K_2 \) and \(u \) the vertex of \(K_1 \). Since \(G \) is connected, there exists a vertex \(u_i \) in \(K_{n-3} \) which is adjacent to any one of \(\{v_1, v_2\}\) and \(\{v_3\}\) (or \(u_i \) is adjacent to any one of \(\{v_1, v_2\}\) and \(u_j \) for \(i \neq j \) is adjacent to \(v_3 \)). In this case, \(\{u_i, u_j, u_k, v_1\} \) for \(u_i, u_k \) in \(K_{n-3} \) for \(i \neq j \neq k \) forms a \(\gamma_{pr} \) set of \(G \), so that \(\gamma_{pr} = 4 \) and \(n = 8 \). Hence \(K = K_5 = <u_1, u_2, u_3, u_4, u_5> \). Let \(u_1 \) be adjacent to \(v_1 \) and let \(u_2 \) be adjacent to \(v_3 \). If \(\deg(v_1) = 2, \deg(v_2) = \deg(v_3) = 1 \), then \(G \cong K_5(P_3, P_2, 0, 0, 0) \). By increasing the degrees of the vertices, it can be verified that \(G \cong G_{41}, G_{42}, G_{43} \). Since \(G \) is connected, there exists a vertex \(u_i \) in \(K_{n-3} \) which is adjacent to \(v_1 \), \(v_3 \), so that \(\{u_i, v\} \) is a \(\gamma_{pr} \) set of \(G \). Hence \(\gamma_{pr} = 2 \) and \(n = 6 \), so that \(K = K_3 = <u_1, u_2, u_3> \). Let \(u_1 \) be adjacent to \(v_1 \). If \(\deg(v_1) = 2, \deg(v_2) = \deg(v_3) = 1 \), then \(G \cong C_3(u(P_3, P_2)) \). By increasing the degrees of the vertices, it can be verified that \(G \cong G_{44}, G_{45} \). If \(G \) does not contain a clique \(K \) on \(n-3 \) vertices, then it can be verified that no new graph exists.

Case v. \(\gamma_{pr} = n-5 \) and \(\chi = n-2 \).

Since \(\chi = n-2 \), \(G \) contains a clique \(K \) on \(n-2 \) vertices or does not contains a clique \(K \) on \(n-2 \) vertices. Let \(G \) contains a clique \(K \) on \(n-2 \) vertices. Let \(S = V(G) - V(K) = \{v_1, v_2\} \). Then the induced sub graph \(<S>\) has the following possible cases. \(<S> = K_2, \mathbb{R}_2 \). In both cases, by the various possible arguments, it can be verified that \(G \cong K_5(P_3), G_{46}, G_{47}, G_{48}, G_{49}, G_{50}, G_{51}, K_5(P_2, P_2, 0, 0, 0), G_{52}, G_{53}, G_{54}, G_{55}, G_{56} \). If \(G \) does not contain a clique \(K \) on \(n-2 \) vertices, then it can be verified that no new graph exists.
Case vi. $\gamma_{pr} = n - 6$ and $\chi = n - 1$.

Since $\chi = n - 1$, G contains a clique K_n on $n - 1$ vertices. By various arguments it can be verified that $G \cong K_7(1), K_7(2), K_7(3), K_7(4), K_7(5),$ or $K_7(6)$.

Case vii. $\gamma_{pr} = n - 7$ and $\chi = n$.

Since $\chi = n$, G $\cong K_n$. But for K_n, $\gamma_{pr} = 2$ so that $n = 9$. Hence $G \cong K_9$.

References

2. Harary, F.: Graph Theory. Addison Wesley, Reading (1972)
Communications in Computer and Information Science

The CCIS series is devoted to the publication of proceedings of computer science conferences. Its aim is to efficiently disseminate original research results in informatics in printed and electronic form. While the focus is on publication of peer-reviewed full papers presenting mature work, inclusion of reviewed short papers and abstracts reporting on work in progress is welcome, too. Besides globally relevant meetings with internationally representative program committees guaranteeing a strict peer-reviewing and paper selection process, conferences run by societies or of high regional or national relevance are considered for publication as well.

The topical scope of CCIS spans the entire spectrum of informatics ranging from foundational topics in the theory of computing to information and communications science and technology and a broad variety of interdisciplinary application fields.

CCIS proceedings can be published in time for distribution at conferences or as post-proceedings, as printed books and/or electronically; furthermore CCIS proceedings are included in the CCIS electronic book series hosted in the SpringerLink digital library.

The language of publication is exclusively English. Authors publishing in CCIS have to sign the Springer CCIS copyright transfer form, however, they are free to use their material published in CCIS for substantially changed, more elaborate subsequent publications elsewhere. For the preparation of the camera-ready papers/files, authors have to strictly adhere to the Springer CCIS Authors' Instructions and are strongly encouraged to use the CCIS LaTeX style files or templates.

Detailed information on CCIS can be found at www.springer.com

ISSN 1865-0929

ISBN 978-3-642-28925-5