CONTENTS

CHAPTER–I
THIN FILM: SCIENCE AND TECHNOLOGY

1. Introduction ... 01
1.1 Solar Energy ... 01
1.2 History of the Solar cell development .. 02
1.3 Types of solar cells
 - 1.3.1. The semiconductor – semiconductor (S-S) junction cells 04
 - 1.3.2. The semiconductor – Metal (S-M) junction cells 08
 - 1.3.3. MIS and SIS solar cells .. 09
 - 1.3.4. The semiconductor – Liquid (S-L) junction cells 09
1.4 Photo Electrochemical Cells (PEC)
 - 1.4.1. Components of Photoelectrochemical Cell 12
 - 1.4.2. The advantages of PEC cells .. 14
1.5 Literature survey .. 14
1.6 Thin Films .. 27
1.7. Thin Film Deposition Techniques ... 28
1.8 Plan of Work ... 32
 References ... 34

CHAPTER – II
CHEMISTRY OF THE SEMICONDUCTOR-ELECTROLYTE INTERFACE

2.1 Introduction ... 40
2.2 Concept of Semiconductor ... 41
2.3 Photoelectrode-Electrolyte Interface
 - 2.3.1 An Electrolyte Side of the Interface ... 47
 - 2.3.2 Photoelectrode Side of the Interface ... 52
2.3.3 Surface States and Surface Adsorbed Ions 54
2.3.4 The Differential Capacitance and Mott-Schottky Plots 54
2.4 Mechanism of Charge Transfer Across the S/E Interface 57
 2.4.1 The Charge Transfer in Dark 57
 2.4.2 The Charge Transfer in Light 59
2.5 Efficiency Consideration 61
References 63

CHAPTER-III

EXPERIMENTAL TECHNIQUES: DESIGNS, FABRICATION AND SYNTHESIS

3.1 Introduction 65
3.2 The Chemical Bath Deposition System 65
 3.2.1 A Dust Proof Chamber 66
 3.2.2 Ice Bath 66
 3.2.3 Oil Bath 66
 3.2.4 Reaction Vessel 66
 3.2.5 Substrate Holder 67
 3.2.6 Substrate Cleaning 70
3.3 Synthesis of Thin Film Material 70
 3.3.1 Nature of Substrate 70
 3.3.2 Preparation of the Solutions 71
 3.3.3 Sodiumselenosulphate Preparation 71
 3.3.4 Deposition of the CuSe, In$_2$Se$_3$ and CuInSe$_2$ Thin Film 72
3.4 Various Characterisation Techniques of the Thin Film Material 74
 3.4.1 Thickness Measurement 74
 3.4.2 X-ray Diffraction Properties (XRD) 74
 3.4.3 Morphological Properties 75
 3.4.4 Atomic Absorption Spectroscopy AAS) 78
3.4.5 Optical Absorption Measurement 78
3.4.6 Electrical Transport Properties 78
 a) Electrical Conductivity Measurement 78
 b) Thermoelectric Power Measurement 79
3.5 Photoelectrical Cell Properties 83
 3.5.1 Electrical Contact 83
 3.5.2 Design of Photoelectrochemical Cell 83
 3.5.3 Electrical Properties of Photoelectrochemical Cell 86
 1) Current Voltage Characteristics in Dark and in Light 86
 2) Capacitance - Voltage Characteristics in Dark 86
 3) Barrier Height Determination 87
 4) Power output Characteristics 87
 3.5.4 Optical properties of the photoelectrochemical cell 89
 a) Photo response 89
 b) Spectral response 90
References 91

CHAPTER – IV
STRUCTURAL, MORPHOLOGICAL, OPTICAL AND ELECTRICAL PROPERTIES OF CuInSe₂ THIN FILMS
4.1 Introduction 93
4.2 Theoretical Background 94
 4.2.1 Solubility and Ionic Product 94
 4.2.2 Mechanism of Film Deposition 96
 4.2.3 Formation of Precipitate in the Solution 97
 4.2.4 Supersaturation 98
4.3 Kinetic Studies and Growth Mechanism of CuInSe₂ Thin Films 99
4.4 Various Characterization Techniques 100
CHAPTER - V
PHOTOELECTROCHEMICAL STUDIES OF COPPER INDIUM DISELENIDE THIN FILMS.

5.1 Introduction 139
5.2 Experimental Details 140
 5.2.1. Fabrication of Photoelectrochemical Cell (PEC) 140
 5.2.2. Electrical Characterization of PEC Cell 141
 5.2.3. Optical Characterization of PEC Cell 141
5.3. Results and Discussion 142
 5.3.1. Electrical Properties 142
 a) I-V Characteristics in Dark 143
 b) C–V Characteristics in Dark 144
 c) Barrier – Height Measurement 147
 d) Power Output Characteristics 147
5.4. Optical Characterization 149
 a) Photo Response 150
 b) Spectral Response 152
 c) Speed of Response 153
5.5 Conclusion 153
References 156
CHAPTER - VI
LITHIUM DOPED CuInSe₂ THIN FILMS-STRUCTURAL, OPTICAL, ELECTRICAL AND PHOTOELECTRO CHEMICAL STUDIES

6.1 Introduction 158
6.2 Experimental Details 159
6.2.1 Preparation of Lithium Doped CuInSe₂ Thin Films 159
6.2.2 Characterization of Lithium Doped CuInSe₂ Thin Films 159
6.3 Results and Discussion 160
6.3.1 Physical Properties 160
6.3.2 X-ray Diffraction (XRD) 162
6.3.3 Scanning Electron Microscopy (SEM) 162
6.3.4 Atomic Force Microscopy (AFM) 173
6.3.5 Optical Studies 173
6.3.6 Electrical Properties 174
6.3.7 Thermo Electric Power Measurement 176
6.3.8 Photo-electro Chemical Properties 177
 i) I-V and C-V Characteristics in Dark 177
 ii) Barrier Height Determination 179
 iii) Power Output Curves 179
 iv) Photo Response 181
6.4 Conclusions 184
References 189
CHAPTER VII
SUMMARY AND CONCLUSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>191</td>
</tr>
<tr>
<td>7.2 Preparation of Thin Film Material</td>
<td>193</td>
</tr>
<tr>
<td>7.3 Kinetics and Growth Mechanism</td>
<td>193</td>
</tr>
<tr>
<td>7.4 Characterization of Thin Film Material</td>
<td>194</td>
</tr>
<tr>
<td>7.4.1 Optical Studies</td>
<td>194</td>
</tr>
<tr>
<td>7.4.2 Structural Studies</td>
<td>195</td>
</tr>
<tr>
<td>7.4.3 Morphological Characterization</td>
<td>195</td>
</tr>
<tr>
<td>7.4.4 Electrical Properties</td>
<td>196</td>
</tr>
<tr>
<td>7.5 Photoelectrochemical Properties of Thin Films</td>
<td>197</td>
</tr>
<tr>
<td>7.6 Effect of Lithium Doping in CuInSe$_2$ Thin Films</td>
<td>197</td>
</tr>
<tr>
<td>7.6.1 XRD Studies</td>
<td>198</td>
</tr>
<tr>
<td>7.6.2 Optical Studies</td>
<td>198</td>
</tr>
<tr>
<td>7.6.3 Morphological Studies</td>
<td>198</td>
</tr>
<tr>
<td>7.6.4 Electrical Studies</td>
<td>198</td>
</tr>
<tr>
<td>7.6.5 Photoelectrochemical Studies</td>
<td>199</td>
</tr>
</tbody>
</table>