REFERENCES

1. Abu,A.I., Turhan, D and Mengi,D.
 ‘Two dimensional transient wave propagation in viscoelastic layered media’,

2. Amabili, M. and Garziera, R.

3. Appl, F.C. and Byers, N.R.

5. Avalos, D.R. and Laura, P.A.A.
6. Azimi, S., Hamilton, J. F. and Soedel, W.

7. Bala Subrahmanyam, P. and Sujith R.I.

9. Bambill, D.V. and Laura, P.A.A.

10. Banerjee, B.
11. Banerjee, M.M.

12. Banerjee, M.M.

13. Bardell, N. S.

14. Bardell N.S.

15. Beres, D.P.
16. Bhat, R. B.

17. Bhatnagar, N.S. and Gupta, A.K.

18. Bhatnagar, N.S. and Gupta, A.K.

19. Bhattacharya, A.P. and Bhowmik, K.N.

20. Biswas, P.

22. Boley, B.A.

24. Ceribasi, Seyit and Altay, Gulay.

25. Celep, Z.

27. Chao, C.K. and Heh, T.Y.

28. Cheung, Y.K. and Zhou, D.

31. Cox, H.L. and Boxer, J.
32. Datta, S.
 ‘Large deflections of elliptic plates exhibiting rectilinear orthotropy
 and placed on elastic foundation’, J. Appl. Mach., Trans. ASME,

33. Dhotarad, M.S. and Ganesan, N.
 ‘Vibration analysis of a rectangular plate subjected to a thermal

34. Dickinson, S. M. and DiBlasio, A.
 ‘On the use of orthogonal polynomials in the Rayleigh-Ritz method
 for the study of the flexural vibration and buckling of isotropic and

35. Dozio, Lorenzo and Ricciardi, Massimo.
 ‘Free vibration analysis of ribbed plates by a combined analytical-
 numerical method’, J. Sound and Vibration, Vol.319, Issues 1-2,
36. Diez, L., Gianetti, C.E. and Laura, P.A.A.

37. Ebrahimi, Farzad and Rastogo, Abbas.

38. Elkadiri, M., Benamar, R. and While, R.G.

40. Fan, S.C. and Luah, M.H.
41. Fanconneau, G. and Marangoni, R.D.

42. Filipich, C., Laura, P.A.A. and Santos, R.D.

43. Gaidur, S.I.

44. Ganesan, N.

45. Ganesan, N. and Jagadeeson, T.S.
46. Ganesan, N. and Nagaraja, Rao S.
 'Influence of location of cut-outs on natural frequencies of thin square

47. Garrick, I.E.
 'Survey of Aerothermo-elasticity', J. Aerospace Engg., Vol. 22, pp
 140–147, 1963.

48. Ghosh, N.C.
 'Thermal effect on transverse vibration of spinning disk of variable
 1975.

49. Gnossi, R. O. and Laura, P. A. A.
 'Transverse vibrations of rectangular orthotropic plates with one or
 two free edges while the remaining are elastically restrained against

 'An approach to characterize non linear viscoelastic material behavior
51. Gorman D.J.

‘Free vibration analysis of rectangular plates with symmetrically distributed point supports along the edges’, J. Sound and Vibration, Vol. 73, No. 4, pp. 563-574, 1980

52. Gorman D.J.

53. Gorman D.J.

‘Free vibration of rectangular plates’, Elsevier-Noth Holland Inc., 1982

54. Gorman D.J.

55. Gorman D.J.

56. Gupta, A. K. and Khanna, A.
 "Vibration of visco-elastic rectangular plate with linearly thickr.
varyations in both directions", J. Sound and Vibration, Vol. 3

57. Gupta, A. P. and Bhardwaj, N.
 "Free vibration of polar orthotropic circular plates of quadratica
varying thickness resting on elastic foundation", Appl.
Mathematical Modelling, Vol.29,

58. Gupta, A.P. and Goyal, N.
 "Forces asymmetric response of linearly tapered circular plate’,

 "Vibration of non-homogeneous circular mindlin plates with variab
thickness’,
 J. Sound and Vibration, Volume 302,Issue 1-2,Pages 1-17, 17 Apr
2007.

62. Gupta, U.S., and Ansari, A.H.

63. Gupta, U.S. and Ansari, A.H.
64. Gupta, U.S. and Ansari, A.H.

65. Gurgoeze, M.

66. Gutierrez, R.H., Laura, P.A.A. and Grossi, R.O.

68. Gutierrez, R.H, Laura, P.A.A., Felix, D. and Pistonesi, C.
69. Gutierrez, R.H. and Laura, P.A.A.

70. Gutierrez, R.H. and Laura, P.A.A.

71. Gutierrez, R.H, Laura, P.A.A. and Rossit, C.A.

72. Gutierrez, R.H. and Laura, P.A.A.

73. Hammerand, D.C and Kapania, R.K.

74. Hasegawa M.

75. Huang, M. and Sakiyama, T.

76. Heder Mats.
 ‘Buckling of sandwich panels with different boundary conditions - a comparison between FE-analysis and analytical solutions’, Composite Structures, Vol. 19, No. 4, pp. 313-332, 1991

77. Hewitt, J.S. and Mazumdar, J.
78. Hewitt, J.S. and Mazumdar, J.

79. Hoff, N.J.

80. Hoppmann, W.H.

81. Hoppmann, W.H.

82. Huang, M.H. and Thambiratham, D.P.

83. Iguchi, M and Luco, J.E.
84. Hanco, Sinniah.

85. Irie, T., Yamada, G. and Ikari, H.

86. Jacquot, R.G. and Lindsay, J.E.

87. Jain, R.K. and Soni, S.R.

88. Kalnins, A. and Dym, C.L.

89. Kam T.Y., and Chang R.R.

90. Kameswara Rao, C.

91. Kanazawa, T. and Kawai, T.

93. Kao, W.T.
94. Kaplunov, J. D., Nolde, E.V. and Short, B.F.
 "A perturbation approach for evaluating natural frequencies of
 905-919, 2005.
95. Kerstens J.G.M.
 "Vibration of rectangular plates supported at an arbitrary number of
96. Kim, C. S. and Dickinson, S. M.
 "The flexural vibration of line supported rectangular plate systems", J.
97. Kim, C. S. and Dickinson, S. M.
 "The flexural vibration of rectangular plates with point supports", J.
98. Kim, C. S. and Dickinson, S. M.
 "The free flexural vibration of right triangular isotropic and
 orthotropic Plates", J. Sound and Vibration, Vol. 141, No. 2, pp. 291-
 311, 1990
99. Kim, C. S. and Dickinson, S. M.
 ‘The free flexural vibration of isotropic and orthotropic general

100. Kim, C. S., Young, P. G. and Dickinson, S. M.
 ‘On the flexural vibration of rectangular plates approached by using
 simple polynomials in the Rayleigh-Ritz method, J. Sound Vibration,

101. Kishor, B and Rao, J.S.
 ‘Non linear vibration analysis of rectangular plate on a viscoelastic

102. Kukla, S.
 ‘Free vibration of a system of two elastically connected rectangular
103. Lal, A., Singh, B.N. and Kumar, R.

104. Lamb, H.

'Transverse vibrations of a simply supported rectangular plate of
generalized anisotropy with an intermediate oblique support', J.

'Vibration of simply supported rectangular plates with varying
thickness and same aspect ratio cutouts', J. Sound and Vibration, Vol.
244, No.4, pp.738-746, 2001.

110. Laura, P.A.A., Bambill, D.V., Rossi, R.E. and Rossit, C.A.
'Vibration of an orthotropic rectangular plate with a free edge in the
case of discontinuously varying thickness', J. Sound and Vibration,

111. Laura, P.A.A, Avalos, D.R. and Larrondo, H.A.
'Forced vibrations of a simply supported anisotropic rectangular
112. Laura, P.A.A., Gutierrez, R.H. and Rossi, R.E.
 ‘Vibration of circular annular plates of cylindrical anisotropy and non
 uniform thickness’, J. Sound and Vibration, Vol. 231, No.1, pp.246-

 ‘Transverse vibrations of rectangular plates with thickness varying in
 two directions and with edges elastically restrained against rotation’,

114. Laura, P.A.A. and Ficcadant, G.A.
 ‘Transverse vibration and elastic stability of circular plates of variable
 thickness and with non-uniform boundary conditions’, J. Sound and

115. Laura, P.A.A. and Grossi, R.O.
 ‘Influence of Poisson’s ratio on the lower natural frequencies of
 transverse vibration of a circular plate of linearly varying thickness
 and with an edge elastically restrained against’, J. Sound and
116. Laura, P.A.A. and Grossi, R.O.

117. Laura, P.A.A. and Luisoni, L.E.

118. Laura, P.A.A. and Romanelli, E.

119. Laura, P.A.A. and Valerga De Greco, B.

120. Laura, P.A.A., Filipich, R.D. and Santos, R.D.

121. Laura, P.A.A., Gutierrez, R.H. and Sanchezsarmiento, G.

122. Laura, P.A.A., Gutierrez, R.H. and Romanelli, E.

123. Laura, P.A.A., Luisoni, L.E. and Looez, J.J.

124. Laura, P.A.A., Paloto, J.C. and Santos, R.D.
125. Laura. P.A.A., Vera, S.A., Vega, D.A. and Sanchez, M.D.
 'Approximate method for analyzing vibrating, simply supported
 circular plates of rectangular orthotropic', J. Sound and Vibration,

126. Laura. P.A.A., Gutierrez, R.H., Rossi, R.E. and Rossit, C.A.
 'Transverse vibrations of clamped rectangular plate or slab with an
 orthotropic patch', J. Sound and Vibration, Vol. 238, No. 4, pp. 705-

 'The vibrational response of clamped rectangular porous plate', J.

128. Lee, H. P. and Lim, S. P.
 'Free vibration of isotropic and orthotropic square plates with square

129. Lee I. and Lee J.J.
 'Vibration analysis of composite plate wing', Computers and
130. Leissa, A.W.

131. Leissa, A.W.

132. Leissa, A.W.

133. Leissa A.W.

134. Leissa A.W.

135. Leissa A.W.

136. Leissa, A. W.

137. Leissa A.W.
 The Shock and Vibration Digest, Vol. 19, No. 2, pp. 11-18, 1987

138. Leissa A.W.

139. Leissa A.W.
 The Shock and Vibration Digest, Vol. 9, No. 11 pp. 21-35, 1977

140. Leissa, A.W.
141. Leissa, A.W.

142. Leissa, A.W.

143. Leissa, A.W.

144. Leissa, A.W.

145. Leissa, A.W.

146. Leissa, A.W.

147. Leissa, A. W. and Jaber, N. A.
 "Vibrations of completely free triangular plates", Int. J. Mech. Sci.,

148. Leissa, A.W., Laura, P.A.A. and Gutierrez, R.H.
 "Vibrations of rectangular plates with non-uniform elastic edge
 supports", J. Appl. Mech., Trans. ASME, Vol.47, No.4, pp.891-895,
 1980.

149. Leissa, A.W., Laura, P.A.A. and Gutierrez, R.
 "Transverse vibrations of circular plates having non uniform edge

150. Leissa, A.W. and Narita, Y.
 "Natural frequencies of a simply supported circular plates", J. Sound

151. Leissa, A. W., and Narita, Y.
 "Vibration studies for simply supported symmetrically laminated

152. Lekhnitski, S.G.
 (New York N.Y.), 1956.
153. Li, N. and Gorman, D. J.

154. Li, N. and Gorman D.J.
 ‘Free vibration analysis of simply-supported rectangular plates with internal line support along diagonals’, J. Sound and Vibration, Vol 165, No 2, pp 361-368, 1993

155. Li, S.R and Zhou, Y.H.

156. Lice, W.H. and Chang, I.B.
157. Liew K.M.

158. Liew, K.M. and Lam, K.Y.

159. Liew, K. M. and Lam, K. Y.

160. Liew, K. M. and Wang, C. M.

161. Love, A.E.H.

162. Maretic, R.

163. Malhotra, S. K., Ganesan, N. and Veluswami, M. A.

164. Manna, M.C.

165. Mase, G.E.

166. Mathew, T. C., Singh, G. and Rao, G. V.
 'Thermally induced vibrations of a visco-elastic plate', J. Sound and Vibration.

168. McNitt, R.P.

169. Mivhel, R.

170. Muge, F.C. and Johnsan, G.E.

171. Mukhopadhyay, M.

173. Nagaya, K.

174. Nagaya, K.

175. Nair, P.S. and Durvasula, S.

176. Narita Y.
177. Narita, Y.

178. Narita, Y.

179. Narita, Y. and Leissa, A.W.

180. Narita, Y. and Leissa, A. W.

181. Nowacki, W.

182. Nowacki, W.

183. Olsson, U.

184. Oniszczuk, Z.

185. Orris, R.M. and Petyt, M.

186. Pandey M.D. and Sherbourne A.N.

187. Park, Junhong and Mongeau, Luc.

188. Parkus, H.

189. Patel, S.A. and Broth, F.J.
 "Axisymmetric buckling of orthotropic circular plates with variable

190. Pistonesi, C and Laura, P.A.A.
 "Forced vibrations of clamped, circular plate of rectangular
 orthotropy", J. Sound and Vibration, Vol.228, No.3, pp.712-716,
 1999.

191. Presscott, T.

192. Pronsato, M.E., Laura, P.A.A. and Juan, A.
 "Transverse vibrations of rectangular membrane with discontinuously
 varying density", J. Sound and Vibration, Vol. 222, No.2, pp.341-344,
 1999.

 "Fundamental frequency of thin elastic plates", J. Sound and
194. Raju I.S. and Amba-Rao C.L.

‘Free vibration of a square plate symmetrically supported at four points along the diagonals’, J. Sound and Vibration, Vol. 90, No. 2, pp. 291-297, 1983

195. Ramaiah, G.R. and Vijaya Kumar, K.

196. Rao, C.K. and Satyanarayana, B.

197. Rao G.V., Raju I.S. and Amba-Rao C.L.

198. Rayleigh, L.

199. Reddy, A.R., Krishna and Palaninathan, R.

200. Romanelli, E. and Laura, P.A.A.

201. Rossi, R.E.

202. Rossi, R.E.

203. Rossi, R.E. and Laura, P.A.A.

204. Rossi, R.E., Laura, P.A.A., Avalos, D.R. and Larrondo, H.A.

205. Saito, H. and Yamaguchi, H.

206. Sakata, T.

207. Sakata, T. and Hosokawa, K.

208. Sakiyama, T., Haung, M., Matuda, H. and Morita, C.

209. Saliba H.Y.
210. Saliba H.Y.

211. Saliba H.Y.

212. Sathyamoorthy, M.

213. Schiavone, P.

214. Senthil, S. and Batra, R.C.
 ‘Analytical solution for rectangular thick laminated plates subjected
to arbitrary boundary conditions’, AIAA Journal, Vol.37, No.11,

215. Sherbourne, A. N. and Pandey, M. D.
 ‘Differential quadrature method in the buckling analysis of beams and
composite plates’, Computers and Structures, Vol. 40, No. 4, pp. 903-

216. Singal, R. K. and Gorman D.J.
 ‘A general analytical solution for free vibration of rectangular plates
resting on fixed supports and with attached masses’, J. Electronic

217. Singal, R. K. and Gorman D.J.
 ‘Effect of attached masses on free vibration of rigid point supported
218. Singh, B. and Chakraverty, S.

219. Singh, B. and Chakraverty, S.

220. Singh, B. and Chakraverty, S.

221. Singh, B. and Chakraverty, S.
222. Singh, B. and Chakraverty, S.

223. Singh B. and Chakraverty S.

224. Singh, B. and Saxena, V.

225. Singh, B. and Saxena, V.

226. Singh, B. and Saxena, V.
227. Singh, G. and Venkateswara, Rao, G.
‘Design formulae for predicting the fundamental frequency and
critical load of elliptical plates’, J. Sound and Vibration, Vol. 149,

228. Singh, B. and Hassan, S.M.
‘Transverse vibration of triangular plate with arbitrary thickness
variation and
various boundary conditions’, J. Sound and Vibration, Vol. 214, Issue

229. Singh, B. and Hassan, S.M.
‘Transverse vibration of a circular plate with arbitrary thickness
variation’, International Journal of Mechanical Sciences, Vol. 40,

230. Sivakumaran, K. S.
‘Natural frequencies of symmetrically laminated rectangular plates
231. Sobotka, Z.

232. Sobotka, Z.

233. Spinner, S.

234. Srinivasan, R.S. and Munaswamy, K.

235. Stavsky, Y. and Loewy, R.

236. Takeuti, Y. and Furukawa, T.
 'Some considerations on thermal shock problems in a plate', J. Appl.

237. Timoshenko, S.
 'Vibration problems in engineering', A East–West Pub., Third Ed.,

238. Timoshenko, S. and Woinowsky, K.S.
 'Theory of plates and shells', 2nd Ed., McGraw-Hill, New York,
 1959.

239. Tomar, J.S. and Gupta, A.K.
 'Effect of thermal gradient on frequencies of an orthotropic
 rectangular plate whose thickness varies in two directions', J. Sound

240. Tomar, J.S. and Gupta, A.K.
 'Vibration of an orthotropic elliptic plate of non-uniform thickness
 and temperature', J. Sound and Vibration, Vol. 96, No.1, pp.29-35,
 1984.
241. Tomar, J.S. and Gupta, A.K.
 "Thermal effect on frequencies of an orthotropic rectangular plate of
 linearly varying thickness", J. Sound and Vibration, Vol. 90, No.3,
 pp.325-331, 1983.

242. Tomar, J.S. and Gupta, A.K.
 "Harmonic temperature effect on vibrations of an orthotropic plate of

243. Tomar, J.S. and Gupta, A.K.
 "Effect of exponential temperature variation on frequencies of an
 orthotropic rectangular plate of exponentially varying thickness",
 Proceeding of the workshop on computer application in continuum
 mechanics, March 11-13, Deptt. of Math.U.O.R, Roorkee, pp.183-
 188, 1986.

244. Tomar, J.S. and Gupta, A.K.
 "Harmonic temperature effect on axisymmetric vibrations of an
 orthotropic circular plate of variable thickness", Proceeding of the
 workshop on solid mechanics, March 13-16, Deptt. of Math.U.O.R.
245. Tomar, J.S. and Gupta, A.K.

246. Tomar, J.S. and Gupta, A.K.

247. Tomar, J.S. and Gupta, D.C.

248. Tomar, J.S. and Tewari, V.S.

249. Tomar, J.S., Gupta, D.C. and Kumar, V.
 ‘Free vibrations of non homogeneous circular plate of variable

250. Tomar, J.S., Sharma, R.K. and Gupta, D.C.
 ‘Transverse vibrations of non uniform rectangular orthotropic plates’,

251. Vega, D.A. Vera, S.A. Laura, P.A.A, Gutierrez, R.H. and Pronsato,
 M.E.
 ‘Transverse vibrations of an annular circular plate with free edges and
 an intermediate concentric circular support’, J. Sound and Vibration,

252. Vendhan, C.P. and Das, Y.C.
 ‘Application of Rayleigh-Ritz and Galerkin methods to non linear
 vibration of plates’, J. Sound and Vibration, Vol. 39, No.2, pp.147-
 157, 1975.
253. Vera, S.A., Laura, P.A.A. and Vega, D.A.

254. Vijaya Kumar, K.

255. Vijaya Kumar, K. and Joga Rao, C.V.

256. Vodika, V.

257. Wang, Yan and Wang, Zhong-min.
258. Webber, J. P. H. and Stewart, I. B.

259. Wolfert, A.R.M. and Dieterman, H.A.

260. Xiang, Y. and Zhang, L.

261. Xing, Y.F. and Liu, B.

262. Xu, Zhilun,

263. Yang, J.S.

264. Young, D.

265. Zarubinskaya, M.A. and Horssen, W.T.V.

266. Zhang, J. and Zu, J.W.

207. Zhang, L. and Zu, J.W.

208. Zhu, X., Lee, Y.Y. and Liew, K.M.

'Free vibration analysis functionally graded plates using the element-free

209. Zhou, D. and Cheung,Y.K.