LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate-1.</th>
<th>Photograph of Tecomella undulata</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate-2.</td>
<td>Photograph of Tecomella undulata with flowering</td>
<td>129</td>
</tr>
<tr>
<td>Plate-3.</td>
<td>Shoot showing phyllotaxy of the leaf</td>
<td>130</td>
</tr>
<tr>
<td>Plate-4.</td>
<td>Leaf of Tecomella undulata</td>
<td>131</td>
</tr>
<tr>
<td>Plate-5.</td>
<td>T.S. of leaf</td>
<td>132</td>
</tr>
<tr>
<td>Plate-6.</td>
<td>Anomocytic stomata</td>
<td>133</td>
</tr>
<tr>
<td>Plate-7.</td>
<td>Stem of Tecomella undulata</td>
<td>136</td>
</tr>
<tr>
<td>Plate-8.</td>
<td>T. S. of stem of Tecomella undulata</td>
<td>137</td>
</tr>
<tr>
<td>Plate-9.</td>
<td>Zone of antimicrobial inhibition (mm) of Tecomella undulata Stem and leaf extracts against Staphylococcus aureus.</td>
<td>158</td>
</tr>
<tr>
<td>Plate-10.</td>
<td>Zone of antimicrobial inhibition (mm) of Tecomella undulata Stem and leaf extracts against Escherichia coli.</td>
<td>159</td>
</tr>
<tr>
<td>Plate-11.</td>
<td>Zone of antimicrobial inhibition (mm) of Tecomella undulata Stem and leaf extracts against Pseudomonas aeruginosa.</td>
<td>160</td>
</tr>
<tr>
<td>Plate-12.</td>
<td>Zone of antimicrobial inhibition (mm) of Tecomella undulata stem and leaf extracts against and Bacillus subtilis.</td>
<td>161</td>
</tr>
<tr>
<td>Plate-13.</td>
<td>Zone of antimicrobial inhibition (mm) of Tecomella undulata stem and leaf extracts against Candida albicans.</td>
<td>162</td>
</tr>
<tr>
<td>Plate-14.</td>
<td>Callus induction through internodal explants of Tecomella undulata.</td>
<td>175</td>
</tr>
<tr>
<td>Plate-15.</td>
<td>Callus induction through internodal explants of Tecomella undulata.</td>
<td>176</td>
</tr>
<tr>
<td>Plate-16.</td>
<td>Callus induction through internodal explants of Tecomella undulata with auxins and cytokinins in various combinations.</td>
<td>182</td>
</tr>
<tr>
<td>Plate-17.</td>
<td>Callus induction from internodal explants of Tecomella undulata with auxins and cytokinins in various combinations.</td>
<td>183</td>
</tr>
<tr>
<td>Plate-18.</td>
<td>Callus induction through leaf segments of Tecomella undulata</td>
<td>195</td>
</tr>
<tr>
<td>Plate-19.</td>
<td>Callus induction through leaf segments of Tecomella undulata</td>
<td>196</td>
</tr>
</tbody>
</table>
Plate-20. Callus induction through leaf segment of *Tecomella undulata* with auxins and cytokinins in various combination.

Plate-21. Callus induction through leaf segment of *Tecomella undulata* with auxins and cytokinins in various combination.

Plate-22. Shoot regeneration in internodal explants of *Tecomella undulata* 213

Plate-23. Shoot regeneration in internodal explants of *Tecomella undulata* 214

Plate-24. Shoot regeneration in leaf segments of *Tecomella undulata* 220

Plate-25. Shoot regeneration in leaf explants of *Tecomella undulata* 221

Plate-26. Shoot regeneration in internodal explants of *Tecomella undulata* 226

Plate-27. Shoot regeneration in internodal explants of *Tecomella undulata* 227

Plate-28. Root induction in intermodal explants of *Tecomella undulata*. 239

Plate-29. Root induction in *Tecomella undulata*. 240

Plate- 30. Hardening of Plantlets. 243

Plate- 31. RAPD analysis in mother plant and *in vitro* developed plant. 245

Plate- 32. RAPD peak data files. 246-248

Photograph 251