List of Figures

Fig 2.1 Energy level diagram for absorption ... 33
Fig 2.2 Energy level diagram for emission... 34
Fig 2.3 The potential energy curves for a simple molecule....................................... 36
Fig 2.4 Temporal evolution of copper plasma ... 38
Fig 2.5 Temporal evolution of LIBS plasma ... 42
Fig 3.1 Nd:YAG laser warm-up period studies ... 51
Fig 3.2 Nd:YAG laser stability check for (a) short term (30 mts) and (b) long term (3 hrs). The numbers in the inset show the mean energy variation in three different laser energies during this period. ... 52
Fig 3.3 Nd:YAG laser beam profile ... 52
Fig 3.4 Nd:YAG laser beam output spectrum .. 53
Fig 3.5 Schematic representation of the LIBS set-up. .. 54
Fig 3.6 LIBS system designed and developed for trace elemental analysis 57
Fig 3.7 Captured data from Mercury/Argon calibration lamp with 253.652nm image zoomed in ... 59
Fig 3.8 Calibration file and search window size ... 60
Fig 3.9 Calibration results screen .. 61
Fig 3.10 Relative Efficiency Correction (R E C) dialogue box 63
Fig 3.11 Echelle spectrum of HgAr lamp covering a broad range from 250-800nm.. 64
Fig 3.12 Intensity calibrated spectrum of HgAr lamp .. 64
Fig 3.13 Plasma collecting/collimating system ... 65
Fig 3.14 Echellogram as seen on the detector for (a) single and (b) dual order prisms .. 66
Fig 3.15 Optical layout of the Mechele 5000 echelle spectrograph 67
Fig 3.16 Diagram of an ICCD detector... 67
Fig 3.17 X-Y Motorized translation stage .. 68
Fig 3.18 Run time gate controller system of Andor iStar 69
Fig 3.19 Gate monitoring using oscilloscope for LIBS studies 70
Fig 3.20 Photograph of the assembled LIBS system .. 72
Fig 3.21 (a) Hg-Ar spectrum recorded using czerny-turner spectrograph (b) Resolution on an expanded scale as inset. ...72

Fig 3.22 (a) Hg-Ar spectrum recorded using echelle spectrograph (b) Resolution on an expanded scale as inset..73

Fig 3.23 LIBS spectra of copper recorded using (a) echelle (Mechelle 5000), inset shows the full wavelength coverage (200-900nm) of echelle and (b) czerny-turner (Spectra Pro 150) spectrographs ..74

Fig 3.24 LIBS spectrum of copper with improved collection efficiency.75

Fig 4.1 Reproducibility check of the LIBS system using Hg-Ar lamp81

Fig 4.2 System reproducibility check using copper plasma82

Fig 4.3 LIBS signal variation of copper plasma for different laser powers.83

Fig 4.4 Plasma images and surface plots of copper and zinc samples created using a Nd:YAG laser at varying energies...84

Fig 4.5 Interaction of laser having different spot sizes on a copper surface...........85

Fig 4.6 Laser spot size measurement (Theoretical) ..86

Fig 4.7 LIBS spectra of copper (514-523nm) for varying laser spot sizes. A plot of peak intensities of copper lines against square of spot size is shown inset.88

Fig 4.8 Correlation between the theoretical and experimental spot size measurements ..89

Fig 4.9 Effect of continued ablation from same spot on the surface of the copper plasma ...89

Fig 4.10 (a) Probe distance and (b) Probe angle variation study.............................91

Fig 4.11 Gated copper spectra of LIBS plasma describes the spectral features as a function of time after plasma initiation...92

Fig 4.12 Temporal history of copper spectra in air. ..93

Fig 4.13 Temporal evolution of brass spectrum in LIBS ...93

Fig 4.14 Detector parameters optimization study for copper: Variation in LIBS signal with (a) Gate width (b) Number of laser pulses incident on the target and (c) CCD gain..94

Fig 4.15 Spatial distribution of laser ablated copper plasma..................................96

Fig 4.16 Schematic of the system used for the study of magnetic field effect on LIBS ...98

Fig 4.17 LIBS intensity variation of different elements with magnetic field.........99
Fig 4.18 LIBS intensity variation of 521.82nm line of copper with applied magnetic field .. 100
Fig 4.19 LIBS spectra of (a) copper, (b) zinc and (c) brass samples 101
Fig 4.20 LIBS spectra of 99.99% pure (a) single elements- copper, zinc and iron (clock wise) and (b) multi elements- brass, NiCrMo alloy and Mn doped glass (clockwise) ... 102
Fig 4.21 A LIBS spectrum of copper demonstrating the broad range and high resolution of the developed system .. 103

Fig 5.1 Schematic diagram of the experimental set-up for LIBS studies 112
Fig 5.2 LIBS spectra of copper recorded using ICCD-based echelle spectrograph with a gate delay time of 700 ns at a laser irradiance of 4.5×10^8 W/cm2, showing (A) Cu I atomic lines and (B) Cu II ionic lines used for characterization of the laser-induced Cu plasma. ... 119
Fig 5.3 Boltzmann plot made from the analysis of four Cu I lines, considering the intensities at a delay time of 700 ns .. 121
Fig 5.4 Variation of plasma temperature with delay time.................................. 122
Fig 5.5 Variation of electron density with delay time .. 123
Fig 5.6 Temporal evolution of intensities of two Cu I lines 515.32 and 521.62 nm and their intensity ratio .. 124
Fig. 5.7 Typical LIBS spectra of a Ni alloy (certified sample 1) at 2000 ns delay; (a) with inset showing Ni I line at 352.45 nm and (b) with inset showing Cr I line at 520.84 nm .. 125
Fig 5.8 Calibration curves for Cr at delay times (a) 300 ns, (b) 500 ns, (c) 700 ns, (d) 1000 ns and (e) 2000 ns. Linear regression equations and their coefficients are also given.. 129
Fig 5.9 Correlation of the LIBS determined concentration ratio Cr/Ni and certified concentration ratio Cr/Ni using the calibration curve at a delay time of 2000 ns 131
Fig 5.10 Typical LIBS spectrum of a brass sample at 1000 ns time delay............ 132
Fig 5.11 Schematic diagram of the CF-LIBS algorithm used in this work 134
Fig 6.1 Experimental layout of LIBS system used for soil analysis 142
Fig 6.2 Photograph of the press and die used for soil pellet preparation. Inset shows the soil pellets prepared using this press ... 143
Fig 6.3 Gated spectrum of LIBS plasma from soil as a function of delay .. 145
Fig 6.4 Optimization studies of (i) Laser power (Delay 500ns and Gate width 6000ns), (ii) Number of Laser pulses (Laser power 2×10^{12} W/cm2, Delay 500ns and
Gate width 6000ns) and (iii) Gate width (Laser power $2.5 \times 10^{12} \text{ W/cm}^2$ and Delay 500ns) using soil sample..146

Fig 6.5 Typical LIBS spectrum of a soil sample ...146

Fig 6.6 LIBS spectra of pure copper and soil blank to indicate copper line positions. Inset shows 520nm region of both spectra in expanded scale. ..147

Fig 6.7 LIBS spectrum of 400ppm copper in soil after background subtraction148

Fig 6.8 Soil sample analysis using LIBS ..152

Fig 6.9 Calibration curve for copper in soil (Single line)..155

Fig 6.10 Calibration curve for copper in soil (Multiple lines-13 copper lines)........155

Fig 6.11 Calibration curve for copper in soil (Multiple lines-5 copper lines)........156

Fig 6.12 Calibration curve for copper in soil (Curve fit method).................................157

Fig 6.13 Calibration curve for copper in soil (Total counts method).........................158

Fig 6.14 Calibration curve for copper, iron, magnesium, zinc and calcium in soil...159

Fig 7.1 A typical LIBS spectrum of a Mn-doped glass sample showing Mn and Si atomic lines ..167

Fig 7.2 Calibration curve for Mn at 2000 ns detector gate delay with linear regression equation and its coefficient using four Mn-doped glass samples168

Fig 7.3 Calibration curves for two emission lines of manganese in a glass matrix using LIBS ..169

Fig 7.4 LIBS experimental set-up for elemental analysis of liquid samples170

Fig 7.5 LIBS spectra of HPLC grade water and CuSO$_4$..171

Fig 7.6 Calibration curve for copper in HPLC grade water without background subtraction ..171

Fig 7.7 Calibration curve for copper in HPLC grade water with background subtraction ..172

Fig 7.8 Schematic diagram of the set-up used for preliminary remote LIBS studies 173

Fig 7.9 Intensity decline as a function of distance between copper target and signal collecting system...175

Fig 7.10 Intensity decline as a function of distance between zinc target and signal collecting system..176

Fig 7.11 Intensity decline as a function of distance between iron target and signal collecting system ..177

Fig 7.12 Intensity decline as a function of distance between target and light collecting system for copper and zinc in brass ...179
Fig 7.13 Intensity decline as a function of distance between target and light collecting system for a steel target alloyed with nickel and chromium .. 180

Fig 7.14 Intensity decline as a function of distance between target and light collecting system for nickel and chromium in nickel-base alloys .. 181

Fig 7.15 Calibration curve for chromium at different distances 181

Fig 7.16 (A) Iron peak intensity variation in soil with collection distance (B) Plot depicts the intensity variation with collection distance ... 182

Fig 7.17 Hard tissue Osteotome image and the regions chosen for the current study .. 183

Fig 7.18 LIBS spectrum of a calcified tissue or teeth ... 183

Fig 7.19 LIBS spectral variations of calcium, magnesium and phosphorus at different regions in calcified tissue sample .. 184

Fig 7.20 LIBS spectral variations of calcium and magnesium at different regions in calcified tissue sample ... 185

Fig 7.21 Temporal evolution of copper plasma in the wavelength region 500-525nm ... 186

Fig 7.22 Temporal evolution of copper plasma in 300-380nm & 420-650nm region ... 187

Fig 7.23 Experimental set up for improved LIBS signal collection 189

Fig 7.24 Collected LIBS signal for different lens schemes ... 190