NOMENCLATURE

[B] - Shape function derivative function
[C_G] - Global capacitance matrix
[C_pe] - Element capacitance matrix
[C_p] - Specific heat (J/ Kg K)
[E_0] - Energy density (W/m^2)
[E_r] - Young’s modulus of elasticity in r – direction (N/m^2)
[EWR_{op}] - Optimum value of EWR
[E_z] - Young’s modulus of elasticity in Z – direction (N/m^2)
[E_0] - Young’s modulus of elasticity in θ – direction (N/m^2)
{F} - Acceleration force vector
[F_c] - Tangential force (N)
[f_r] - Thermal stress in r – direction (N/m^2)
[f_z] - Thermal stress in z – direction (N/m^2)
[f_θ] - Thermal stress in θ – direction (N/m^2)
[G_z] - Shear modulus in the rθ- plane
[h] - Coefficient of heat transfer (W/ m^2K)
[J_e] - Element stiffness matrix
[K] - Conductivity matrix
[K^{dl_e}] - Elemental diffusion conductivity matrix
[K_G] - Global conductivity matrix
[K] - Thermal conductivity (W/ mK)
[L_{HB}] - Taguchi loss function (higher is better)
[L_{LB}] - Taguchi loss function (Lower is better)
[MRR_{opt}] - Optimum value of MRR
[M_e] - Element mass matrix
[M_G] - Global mass matrix
{N} - Element shape function vector
{P} - Applied pressure vector
[Q_r] - Heat flux in radial direction (W/ m^2)
Heat flux \(q_{wg} \) - Heat flux

Heat flux in axial direction \(Q_z \) (W/ m\(^2\))

Heat flux in circumferential direction \(Q_\theta \) (W/ m\(^2\))

Element mass flux matrix \(\{ Q_e \} \)

Heat flux vector \(\{ Q_w \} \)

Discharge radius (m) \(R \)

Stress vector \(\{ S \} \)

Signal to noise ratio \(S/N \)

Equivalent stress \(S_{eq} \)

Optimum value of SR \(SR_{opt} \)

Global temperature vector \([T_G] \)

Element’s nodal temperature vector \(\{ T_e \} \)

Thermal load vector \(\{ T_{He} \} \)

Global thermal load vector \(\{ T_{Hg} \} \)

Vector of displacement \(\{ W \} \)

Boiling point \(T_b \)

Temperature due to EDM (K) \(T_{EDM} \)

Ambient temperature (K) \(T_o \)

Pulse Off time (\(\mu \)s) \(T_{off} \)

Pulse On time (\(\mu \)s) \(T_{on} \)

Temperature due to surface grinding (K) \(T_{SG} \)

Specific grinding energy of work material (j/m\(^3\)) \(U_g \)

Volume of element \(V \)

Grinding speed (mm/s) \(V_s \)

Measured value of electrode wear rate \(Y_{EWR} \)

Measured value of material removal rate \(Y_{MRR} \)

Measured value of surface roughness \(Y_{SR} \)

Greek symbols

Strain vector \(\{ \varepsilon \} \)

Density of material (Kg/ mm\(^3\)) \(\rho \)

Thermal diffusivity (m\(^2\)/s) \(\alpha \)

Duty factor \(\tau \)