CONTENT OF THE THESIS

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Abbreviations</td>
<td>I</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>1-70</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>71-107</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>108-128</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>129-158</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>159-174</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>175-193</td>
</tr>
<tr>
<td>Publications, Conferences and Symposia</td>
<td>194-196</td>
</tr>
</tbody>
</table>
CONTENTS

List of Abbreviations 1

Chapter 1

1.1 Introduction 1

1.2 How to get pure single isomer? 3
 1.2.1 The chiral pool approach 4
 1.2.2 Resolution of racemates 5
 1.2.2.1 Crystallization 5
 1.2.2.2 Classical kinetic resolution 5
 1.2.2.3 Kinetic resolution 6
 1.2.2.4 Chiral chromatography 7
 1.2.3 Asymmetric synthesis 8
 1.2.3.1 Asymmetric catalysis 8
 1.2.3.2 Classification of asymmetric catalysis 9
 1.2.3.3 Homogenous asymmetric catalysis 10
 1.2.3.4 Heterogeneous asymmetric catalysis 10
 1.2.3.5 Biocatalysts 11
 1.3 Asymmetric C-C bond forming reactions 11
 1.4 Enantioselective cyanation reactions 12
 1.4.1 Asymmetric cyanation of aldehydes and ketones 14
 1.4.1.1 Catalytic system based on Titanium 15
 1.4.1.1.1 Titanium-chiral alcohol complexes 15
 1.4.1.1.2 Titanium based chiral C₂ symmetric complexes 16
 1.4.1.1.3 Other C₂ symmetric salen complexes 21
 1.4.1.1.4 C₁ symmetric ligand for cyanation reaction 22
 1.4.1.1.5 Titanium BINOL based complexes 23
 1.4.1.1.6 Bifunctional catalysts 24
 1.4.1.2 Aluminium based catalytic system 26
 1.4.1.3 Vanadium based catalysts 28
1.4.1.4 Lanthanide complexes 29
1.4.1.5 Manganese based catalysts 30
1.4.2 Asymmetric Strecker reactions 31
1.4.2.1 Acid catalyzed reactions 34
1.4.2.2 Base catalyzed reactions 36
1.4.2.3 Metal complexes catalyzed asymmetric Strecker reaction 40
1.5 Hydrolytic kinetic resolution (HKR) of racemic epoxides 48
1.6 Summary of the work done in the present thesis 49
1.7 References 61

Chapter 2
2.1 Introduction 71
2.2 Experimental methods 72
2.2.1 Materials and Methods 72
2.2.2 Synthesis of chiral salen ligands (1') (Scheme 2.1) 73
2.2.2.1 Synthesis of 2 73
2.2.2.2 Synthesis of 3 74
2.2.2.3 Synthesis of 1'a 75
2.2.2.4 Synthesis of 1'b 75
2.2.2.5 Synthesis of 1'c 76
2.2.2.6 Synthesis of 1'd 76
2.2.2.7 Synthesis of 1'e 77
2.2.2.8 Synthesis of 1'f 77
2.2.3 Synthesis of complex 1a 78
2.2.4 Synthesis of complex 1b 79
2.2.5 Synthesis of 1c 79
2.2.6 Synthesis of complex 1d 79
2.2.7 Synthesis of 1e

2.2.8 Synthesis of 1f

2.2.9 General procedure for 1a-1f catalyzed asymmetric O-acetylcyanation of aldehyde

2.2.10 General procedure for 1b catalyzed asymmetric O-acetylcyanation of aldehyde

2.2.11 Characterization data of product

2.2.13 Reuse of catalyst 1b in asymmetric O-acetylcyanation of benzaldehyde with KCN

2.3 Results and Discussion

2.1 Scope of organic cyanide source

2.4 Reuse of complex 1b

2.5 Conclusion

2.6 References

Chapter 3

3.1 Introduction

3.2 Experimental Section

3.2.1 General information

3.2.2 General procedure for cyano ethoxycarbonylation reaction

3.2.3 Large scale asymmetric cyano-ethoxycarbonylation of benzaldehyde with ethyl cyanoformate catalyzed by $in situ$ generated Ti-1’b

3.2.4 Reuse of $in situ$ generated Ti-1’b catalyst in asymmetric cyano-ethoxycarbonylation of benzaldehyde with ethyl cyanoformate

3.2.5 Procedure for the conversion of cyano-carbonate to amine derivative

3.3 Results and Discussion
3.3.1 Scope of substrates 117

3.3.2 Mechanism and kinetic study 119

3.3.2.1 Effect of catalyst concentration on reaction rate 119
3.3.2.2 Effect of ethyl cyanoformate concentration on reaction rate 120
3.3.2.3 Effect of substrate concentration on reaction rate 120

3.4 Characterization data of drug molecules and their intermediates 123

3.5 Conclusion 123

3.6 References 125

Chapter 4

4.1 Introduction 129

4.2 Experimental Section 130

4.2.2.1 Preparation of catalyst 2a-2i 130

4.2.2.2 Typical experimental procedure for the enantioselective Strecker reaction of N- benzhydryl imines using catalyst 2i 139

4.3 Results and Discussion 143

4.3.1 Application of catalyst 2i in the synthesis of (R)-Tetramisole 148
4.3.2 Kinetic study 149

4.3.3 Theoretical study 151

4.4 Conclusion 153
4.5 References 154

Chapter 5

5.1 Introduction 158
5.2 Experimental

5.2.1 Typical procedure for one-pot asymmetric Strecker reaction of aldehyde with secondary amine using benzaldehyde and morpholine as an example

5.2.2 Characterization data of aminonitriles

5.3 Results and discussion

5.4 Conclusion

5.5 References

Chapter 6

6.1 Introduction

6.2 Experimental Section

6.2.3 Hydrolytic Kinetic Resolution of terminal epoxides

6.2.4 Recyclability of the catalyst for the HKR of epichlorohydrin

6.3 Results and Discussion

6.4 Synthesis and characterization of (R)-Mexiletine, (S)-Propanolol and their intermediates

6.4.1 Synthesis of 7

6.4.2 Synthesis of (R)-mexiletine (8)

6.4.3 Synthesis of (S)-Propanolol (9)

6.5 Conclusion

6.6 References