Introduction
Aphids are the small, soft bodied insects belonging to the Family Aphididae of Order Hemiptera, and Suborder Homoptera. About 4000 species of aphids are known worldwide and about 787 species belonging to 211 genera are known from Indian region (Ghosh 1989).

They are sap sucker insects commonly known as ‘Plant Lice’. They feed on different parts of plant and cause direct damage to the plant by sucking cell sap from their host plant. Aphids are extremely polymorphic. They are serious agricultural pest and they infest variety of plants like fruit trees, pulses, oilseeds, cash crops, vegetables, garden plants and medicinal plants etc. They prefer to feed on tender parts of plants like young leaves and shoots, and some species may infest roots as well. Aphids act as a vector of Plant Viruses and thus assume more economic importance. Infestation by aphids causes dwindling of plants by sucking the sap. The sugary secretion voided by them through the anus called as ‘honey dew’ accumulates on plants and ants gets attracted to it (Behura 1997). Deposition of this Honey dew on the leaf surface allows the growth of sooty mould, which in turn proves detrimental to the plant life (Raychaudhuri 1980). The aphids are of great economic importance as they inflict serious damage to plants in three ways – (i) by sucking sap, (ii) by toxic action of their salivary secretion inflicted during feeding resulting in stunted growth, deformation of leaves and fruits and by causing galls on leaves, stems or roots, and (iii) by acting as vector of Viral diseases of plants (Palmer 1952).

About 300 species of aphids have been tested as vector of 300 different viruses in about the same number of plants (Eastop 1977). The cosmopolitan Myzus persicae alone transmits 90 different viruses (Eastop 1961).
Aphids present peculiar reproductive behavior. Some are anholocyclic (continuously Parthenogenetic), while others living in temperate climates are holocyclic (sexual generation alternate with Parthenogenetic reproduction) i.e. alternation of generation. Aphids combine three traits to reach very large population size very quickly- (i) Thelytokon parthenogenesis (obligate parthenogenesis where female give birth only to female offspring). (ii) Short generation time (about 10 days on average) and (iii) telescoping of generation (where granddaughters being developing directly within the daughters which are themselves not yet born). These reproductive characteristics allow aphids to quickly colonize and make them ideal enemies of monocultural crops. Parthenogenetic generation of aphids consists of alatae (winged) and apterous (wingless) form.

India is the mega diversity country has estimated plants species of over 45000 out of which about 1800 plant spp. are of significant medical importance and are in use in preparing different therapeutic formulations in the country. Out of them, nearly 1250 plant species belonging to the 700 genera and 175 plant families are used as food plants by 653 species representing 208 genera of aphids in India. The perusal of literature survey demonstrated that among them, 428 species/subspecies of aphids infest 530 species of medicinal plants belonging to 117 plant families in India. There are 25 families of medicinal plants which are infested by more than 10 aphid species. Maximum number of aphid species infest the medicinal plants belonging to the family Asteracea (95 aphid spp.) followed by Rosaceae (77 aphid spp.), Poaceae (67 aphid spp.), fagaceae (40 aphid spp.), Polygonaceae (30 aphid spp.), Solanaceae (30 aphid spp.), labiatae (23 aphid spp.) and fabaceae (20 aphid spp.). However, extensive and intensive surveys to various ecological niches under diverse climatic conditions in future may reveal many more medicinal plants infested by the aphids.
Aphids can be controlled chemically and biologically. Various pesticides or insecticides can be used to kill the aphids. Many parasites and predators attack aphids. The more common predators are ladybeetles and their larvae, Lacewing larvae and Syrphid fly larvae. Use of insecticides may be hazardous to these entomophagous insects and causes decline in their population due to which aphid population may increase. So biological method to control these aphids are more relevant.

Aphid parasites are among the most ubiquitous of the parasitic wasps, found almost invariably among aphid colonies. As the wasp develops within the aphid, the host typically swells, becomes lighter in colour and affixed to the leaf. Aphids killed in this manner are often referred to as “aphid mummies”. A circular hole cut by the emerging wasp is also characteristic. Among the more common genera of aphid wasps are: *Trioxys*, *Diaeretiella rapae* (Green peach aphid, cabbage aphid, Russian wheat aphid), *Lysiphlebus testaceipes* (Greenbug and other aphids), and *Aphidius matricariae* and *A. ervi* etc. Among the tiniest of the parasitic Hymenoptera are the Encyrtids. They develop internally in eggs, larvae or pupae of certain insects. Some species are polyembryonic (like *Copidosoma truncatellum*) and numerous larvae- sometimes over 1000-develop from the few eggs originally laid. The larvae of this wasp develop throughout the larval life of the host, killing it as it prepares to pupate. Within the Encyrtids are the Aphelinid wasps (Aphelininae), which include many important species that attack insects in the order Homoptera. *Aphelinus* is a genus that includes important parasites of aphids, aphids characteristically turn dark black when parasitized. The common encyrtid Wasps are: *Aphelinus albirodus*, *A. asychis*, *A. gossypii* and *A. varipes* etc.

Many aphid spp. like *Macrosiphum euphorbiae* (Thomas), *Myzus persicae* (Sulzer) and *Nasonovia ribisnigri* (Mosley) can be controlled by using plant triterpenoid molecule
azadirachtin (Bio Neem) and an insecticidal soap. They can also be controlled by introducing fungal infection in them i.e. Hyphomycete *Verticillium lecanii* (Viegas) (Strain Vertalec). This indicates that these three species are susceptible to the entomopathogenic fungus, plant extracts and insecticidal soap. Other methods to control aphids are – yellow sticky trap, yellow water pan trap etc.

The present author visited important agricultural areas in different localities of Aligarh and I.A.R.I. PUSA New Delhi during 2006-2008 for survey of Aphid pests of agricultural crops. The survey yielded a good number of specimens, which served as a basis for the present study. This is the first systematic collection of Aphids from Aligarh region. Further, it has revealed interesting observations on the distribution of Aphid species in different regions. Some useful observations were also made on their biology, pest-plant, pest-predator and pest-parasite relationships.

In the present study the author upholds recent workers in classifying Aphids with a few generally accepted changes. The genera and species recorded from this region are assigned under the following families and subfamilies, mainly based on conventional morphological characters. Family Aphididae, Subfamily Aphidinae and Tribes Aphidini and Macrosiphini.

Brief diagnosis of Family, Subfamily, Genera and species is given. Keys to Tribes, genera and species where ever necessary are given. Most of the genera are represented by single species. The species represented in this region are briefly described and illustrated. Notes on coloration are also given.
References marked with an asterisk (*) have not been consulted in original because they were not available to the present author. Anyway, efforts have been made to make up this shortening by consulting standard and recent works on this group. However, these references are included to present a more complete list of references.