LIST of FIGURES

Chapter I

Fig. 1.1 Four stages in the collision of two heavy nuclei, reading from top to bottom: initial approach, interaction through the color field, formation of a Quark-Gluon Plasma and radiation of photons and lepton pairs, and formation of hadronic matter.

Fig. 1.2 A schematic diagram of collision geometry and pseudo-rapidity distributions in heavy ion nucleus-nucleus collisions at high energy.

Fig. 1.3 Particle production for two extreme scenarios. The Fermi Landau model shows complete stopping, in (a) and the Bjorken – McLerran model shows partial transparency, in (b).

Fig. 1.4 Cayley tree representation of intermittency.

Fig. 1.5 Box diagram of intermittency. The initial phase space is into boxes following the Cayley tree scheme of Fig. (4.1).

Chapter III

Fig. 3.1 Multiplicity distributions of secondary charged particles produced in the interactions of 28Si-Em, 12C-Em and P-Em at 4.5A GeV/c for (a) black tracks (b) grey tracks and (c) heavily ionizing tracks.

Fig. 3.2 Total charged multiplicity distributions of particles produced in the interactions 28Si-Em and 12C-Em at 4.5A GeV/c.

Fig. 3.3 Multiplicity distributions of secondary charged particles produced in the interactions of 28Si-AgBr and 12C-AgBr at 4.5A GeV/c for (a) black tracks (b) grey tracks and (c) heavily ionizing tracks.

Fig. 3.4 Multiplicity distributions of secondary charged particles produced in the interactions of 28Si-CNO and 12C-CNO at 4.5A GeV/c for (a) black tracks (b) grey tracks and (c) heavily ionizing tracks.

Fig. 3.5 Integral multiplicity distributions of heavily ionizing particles produced in the interactions of (a) 28Si-Em and (b) 12C-Em at 4.5A GeV/c.

Fig. 3.6 Shower particle multiplicity distributions in the interactions of (a) 28Si-Em, 12C-Em and P-Em (b) 28Si-AgBr and 12C-AgBr and (c) 28Si-CNO and 12C-Em at 4.5A GeV/c.

Fig. 3.7 Variation of $<N_{t}>$, $<N_{g}>$, $<N_{h}>$ and $<N_{s}>$ as a function of projectile mass number (Ap).

Fig. 3.8 Multiplicity correlations of various charged particles produced in the interactions of 28Si-Em at 4.5A GeV/c.

Fig. 3.9 Multiplicity correlations of various charged particles produced in the interactions of 12C-Em at 4.5A GeV/c.

Fig. 3.10 Shower particle multiplicity distributions in terms of KNO Scaling in the interactions of (a) 28Si-Em and (b) 12C-Em at 4.5A GeV/c.

Fig. 3.11 Variation of D(Nc) as a function $<N_{s}>$ at various energies.

Fig. 3.12 Black particle multiplicity distributions in terms of KNO Scaling in the interactions of (a) 28Si-Em and (b) 12C-Em at 4.5A GeV/c.
Fig. 3.13 Two particle rapidity gap distributions in the interactions of
(a) $^{28}\text{Si-Em}$ and (b) $^{12}\text{C-Em}$ at 4.5A GeV/c 64
Fig. 3.14 Three particle rapidity gap distributions in the interactions of
(a) $^{28}\text{Si-Em}$ and (b) $^{12}\text{C-Em}$ at 4.5A GeV/c 65
Fig. 3.15 The overall distribution of events with a given value of Q at
different energies 69
Fig. 3.16 The distributions of events as a function of Q for (a) $N_h = 0.1$,
(b) $2 \leq N_h \leq 7$ and (c) $N_h \geq 8$ 71
Fig. 3.17 Variation of $<Q>$ as a function of N_g for ^{28}Si and ^{12}C at
4.5A GeV/c for (a) CNO and (b) AgBr targets 72
Fig. 3.18 Variation of (a) $<N_h>$, (b) $<N_g>$, (c) $<N_h>$ and (d) $<N_g>$ as a
function of $<Q>$ for ^{28}Si and ^{12}C at 3.7, 4.5 and
14.6A GeV/c respectively 73
Fig. 3.19 Variation of (a) $<N_h>$, (b) $<N_g>$, (c) $<N_h>$ and (d) $<N_g>$ as a
function of Q/Z_p for ^{28}Si and ^{12}C at 4.5A GeV/c 75

Chapter IV
Fig. 4.1 Variation of $\ln <F_q>$ as a function of $\ln M$ in the interaction
of (a) $^{28}\text{Si-Em}$ (b) $^{28}\text{Si-CNO}$ and (c) $^{28}\text{Si-AgBr}$ at 4.5A GeV/c 86
Fig. 4.2 Variation of $\ln <F_q>$ as a function of $\ln M$ in the interaction
of (a) $^{12}\text{C-Em}$ (b) $^{12}\text{C-CNO}$ and (c) $^{12}\text{C-AgBr}$ at 4.5A GeV/c 87
Fig. 4.3 Variation of $\ln <F_q>$ as a function of $\ln M$ in FRITIOF data for
(a) $^{28}\text{Si-Em}$ (b) $^{28}\text{Si-CNO}$ and (c) $^{28}\text{Si-AgBr}$ at 4.5A GeV/c 88
Fig. 4.4 Variation of $\ln <F_q>$ as a function of $\ln M$ in FRITIOF data
for (a) $^{12}\text{C-Em}$ (b) $^{12}\text{C-CNO}$ and (c) $^{12}\text{C-AgBr}$ at 4.5A GeV/c 89
Fig. 4.5 Variation of fractal dimension d_q as a function of q in the interactions
of (a) ^{28}Si & $^{12}\text{C-Em}$ (b) ^{28}Si & $^{12}\text{C-CNO}$ and (c) ^{28}Si & $^{12}\text{C-AgBr}$
at 4.5A GeV/c 92
Fig. 4.6 Variation of Generalized dimension D_q as a function of q for
(a) ^{28}Si & $^{12}\text{C-Em}$ (b) ^{28}Si & $^{12}\text{C-CNO}$ and (c) ^{28}Si & $^{12}\text{C-AgBr}$
at 4.5A GeV/c 94
Fig. 4.7 Variation of D_q as a function of ln $(q/q-1)$ in η-space for (a) ^{28}Si &
$^{12}\text{C-Em}$ (b) ^{28}Si & $^{12}\text{C-CNO}$ and (c) ^{28}Si & $^{12}\text{C-AgBr}$ at 4.5A GeV/c 97
Fig. 4.8: Variation of λ_q as a function of q in η-space for (a) $^{28}\text{Si-Em}$
(a) ^{28}Si -CNO and (c) $^{28}\text{Si-AgBr}$ at 4.5A GeV/c 99
Fig. 4.9: Variation of λ_q as a function of q in η-space for (a) $^{12}\text{C-Em}$
(b) $^{12}\text{C-CNO}$ and (c) $^{12}\text{C-AgBr}$ at 4.5A GeV/c 100
Fig. 4.10: Variation of $2ln F_q(q-1)$ as a function of $\ln M$ for (a) ^{28}Si and
(b) ^{12}C at 4.5A GeV/c. 102