SUMMARY

The thesis consists of nine chapters. Chapter 0 has been devoted to recall some conventions regarding notations and definitions used throughout the thesis. Chapter I is introductory and contains a résumé of hitherto known results which have direct interconnection with our investigations.

Let \(z \) be any sequence and let \(Y \) be any subset of \(w \). Then we shall write

\[
\mathcal{z}^{-1}.Y := \{ x \in w : zx = (z_kx_k) \in Y \}.
\]

For any subset \(X \) of \(w \), the \(\alpha, \beta \)-duals of \(X \) are defined by:

\[
X^\alpha = \bigcap_{x \in X} (x^{-1} \cdot \ell_1) \quad \text{and} \quad X^\beta = \bigcap_{x \in X} (x^{-1} \cdot cs).
\]

We define the linear operators \(\Delta, \Delta^2, \Delta^{-2} : w \to w \) by

\[
\Delta x = (\Delta x_k)_{k=1}^\infty = (x_k - x_{k+1})_{k=1}^\infty,
\]

\[
\Delta^2 x = (\Delta^2 x_k)_{k=1}^\infty = (\Delta x_k - \Delta x_{k+1})_{k=1}^\infty,
\]

and

\[
\Delta^{-2} x = (\Delta^{-2} x_k)_{k=1}^\infty = \left(\sum_{j=1}^{k-1} \sum_{i=1}^{j-1} x_i \right)_{k=1}^\infty.
\]

Let \(U \) be the set of all sequences \(u = (u_k) \) such that \(u_k \neq 0 \) \((k = 1, 2, \ldots)\). We define the sets

\[
E(u; \Delta^2) = (u^{-1}.E)(\Delta^2) := \{ x \in w : (u_k \Delta^2 x_k)_{k=1}^\infty = 1 \in E \};
\]

and

\[
E(p; u, \Delta^2) = (u^{-1}.E(p))(\Delta^2) := \{ x \in w : (u_k \Delta^2 x_k)_{k=1}^\infty = 1 \in E(p) \}.
\]

We define the operator \(S : E(p; u, \Delta^2) \to E(p; u, \Delta^2) \) by \(x \to Sx = (0, 0, x_3, x_4, \ldots) \).

In Chapter II we prove the following theorems.
Theorem 2.1. Let \(u \in U \). Then \([SE(p; u, \Delta^2)]^\alpha = M_\alpha(p)\), where for a constant \(M > 1 \),
\[
M_\alpha(p) := (\Delta^{-2}(M^{-1/p}/|u|))^{-1} \cdot \ell_1
\]
\[
:= \left\{ a \in w : \sum_{k=1}^{\infty} a_k \left| \sum_{j=1}^{k-1} \sum_{i=1}^{j-1} M^{-1/p_i}/|u_i| \right| < \infty \right\}.
\]

Theorem 2.2. Let \(u \in U \). We write,
\[
M_\beta(p) := \left\{ a \in (\Delta^{-2}(B^{1/p}/|u|))^{-1} \text{ cs : } R \in B^{-1/p}u \cdot \ell_1 \right\}
\]
\[
:= \left\{ a \in w : \sum_{k=1}^{\infty} a_k \sum_{j=1}^{k-1} \sum_{i=1}^{j-1} B^{1/p_i}/|u_i| \right. \text{ converges}
\]
\[
\left. \text{ and } \sum_{k=1}^{\infty} R_k \left| \frac{B^{-1/p_k}}{|u_k|} \right| < \infty \right\}.
\]
for real \(B > 0 \), where, for all \(a \in \text{cs} \),
\[
\gamma_k = \sum_{v=k+1}^{\infty} a_v \quad \text{and} \quad R_k = \sum_{m=k+1}^{\infty} \gamma_m.
\]

Then
(a) \([SE(p; u, \Delta^2)]^\beta = M_\beta(p)\), for \(E = \ell_\infty \), or \(c \).
(b) If \(1/u \in \ell_1 \), then \([SE(p; u, \Delta^2)]^\beta = M_\beta(p)\), for \(E = c_0 \).
(c) If \(1/u \in \ell_\infty \setminus \ell_1 \), then \([SE(p; u, \Delta^2)]^\beta \neq M_\beta(p)\), for \(E = c_0 \).

Theorem 2.3. \(A \in (E, F(p; u, \Delta^2)) \) if and only if
(i) \(\sum_k |a_{nk}| < \infty \), for each \(n \);
(ii) \(C \in (E, F(p)) \),
where \(C = (c_{nk}) = ((\Delta a_{nk} - \Delta a_{n-1,k})u_k) \).

Theorem 2.4. \(A \in (F(p; u, \Delta^2), E) \) if and only if
(i) \((a_{n1}) \) and \((a_{n2}) \in F(p; u, \Delta^2) \);
(ii) \(\sum_{k=1}^{\infty} a_{nk} \sum_{j=1}^{k-1} \sum_{i=1}^{j-1} B^{1/p_i}/|u_i|^{-1} < \infty, (B > 1) \), for each \(n \);
(iii) $\sum_{k=1}^{\infty} |R_{nk}| B^{-1/p_k} |u|^{-1} < \infty, (B > 1)$, for each n;

(iv) $R u^{-1} \in (F(p), E)$,

where $R = (R_{nk}) = (\sum_{m=k+1}^{\infty} \gamma_{nm})$ and $\gamma_{nm} = \sum_{i=m+1}^{\infty} a_{ni}$.

Theorem 2.5. $A \in (E(p; u, \Delta^2), F(p; u, \Delta^2))$ if and only if

(i) $\sum_{k} a_{nk} \sum_{j=1}^{k-1} \sum_{i=1}^{j-1} B^{1/p_i} |u_i|^{-1} < \infty, (B > 1)$, for each n;

(ii) $\sum_{k} |R_{nk}/u_k| B^{-1/p_k} < \infty, (B > 1)$, for each n;

(iii) $R u^{-1} \in (E(p), F(p))$.

(iv) (c_{n1}) and $(c_{n2}) \in E(p; u, \Delta^2)$,

where $R_{nk} = (R_{nk}), C = (c_{nk})$, with

$$R_{nk} = \sum_{m=k+1}^{\infty} \sum_{i=m+1}^{\infty} c_{ni} \quad \text{and} \quad c_{nk} = (\Delta^2 a_{nk}) u_k = (\Delta a_{nk} - \Delta a_{n-1,k}) u_k.$$

In Chapter III we prove some theorems relating to σ-convergence. We recall the following:

$c^\sigma := \{x \in \ell_\infty : \lim_{m \to \infty} t^\sigma_{mn}(x) = L, \text{ uniformly in } n, L = \sigma\text{-lim } x\}$,

where

$$t^\sigma_{mn}(x) = (x_n + T x_n + \cdots + T^m x_n)/(m+1) = \frac{1}{m+1} \sum_{j=0}^{m} x_{\sigma^j(n)}.$$

$\hat{c} := \{x \in \ell_\infty : \lim_{m \to \infty} \hat{t}_{mn}(x) = L', \text{ uniformly in } n, L' = B\text{-lim } x\}$,

where

$$\hat{t}_{mn}(x) = (x_n + x_{n+1} + \cdots + x_{n+m})/(m+1) = \frac{1}{m+1} \sum_{j=0}^{m} x_{n+j}.$$

We write $\hat{C} = \hat{c} A$ and $C^\sigma = c^\sigma A$, as iteration products of two spaces. We define the spaces associated with the summability method C^σ as :

$$\ell(C^\sigma, p) := \{x \in \ell_\infty : \sum_{m} |t^\sigma_{mn}(Ax)|^p < \infty, \text{ uniformly in } n\},$$
and
\[\ell(C^\sigma, p) := \{ x \in \ell_\infty : \sup_n \sum_m t_m^\sigma(Ax) |p^m < \infty \}, \]

where
\[t_m^\sigma(Ax) = (Ax + T(Ax) + \cdots + T^m(Ax))/(m + 1) \]
\[= \frac{1}{m+1} \sum_{k=1}^\infty \sum_{j=0}^\infty a(\sigma^j(n), k)x_k \]
\[= \sum_k a(n, k, m)x_k \]

and
\[\alpha(n, k, m) = \sum_{j=0}^m a(\sigma^j(n), k)/(m + 1). \]

The spaces:
\[\ell(A, p) := \{ x \in \ell_\infty : \sum_n |A_m(x)| |p^m < \infty \}, \]

and
\[\ell(A, p)_\infty := \{ x \in \ell_\infty : \sup_m |A_m(x)| |p^m < \infty \} \]

are known.

We prove:

Theorem 3.1. \(\ell(C^\sigma, p) \subset \ell(C^\sigma, p). \)

Theorem 3.2. \(\ell(C^\sigma, p) \subset \ell(A)_\infty, \) where \(\ell(A)_\infty \) is the special case of \(\ell(A, p)_\infty \) for \(p = 1 \) for all \(m. \)

Theorem 3.3. \(\ell(C^\sigma, p) \) is a linear topological space paranormed by:

\[(3.3.1) \quad h(x) = \sup_n \left(\sum_m | \sum_k a(n, k, n)x_k |p^m \right)^{1/M}, \]

where
\[M = \max(1, \sup p_m). \]

\(\ell(C^\sigma, p) \) is paranormed by (3.3.1) if \(\inf p_m > 0. \)

Theorem 3.4. Let \(0 < p_m \leq q_m. \) Then \(\ell(C^\sigma, p) \subset \ell(C^\sigma, q). \)
Theorem 3.5. Let $b_{nk} > 0$. If

$$
\sup_n \sum_k |a_{nk}| \left(b_{nk} \right)^{1/p} < \infty
$$

and

$$
\sup_m \sum_k \alpha(n, k, m) \left(b_{nk} \right)^{-1/q} < \infty
$$

where $p^{-1} + q^{-1} = 1$. Then $A \in \ell_p(C^\sigma)$, $\tilde{\ell}_p(C^\sigma)$ being the special case of $\ell(C^\sigma, p)$, for $p_m = p$, for all m.

Theorem 3.6. Let $1 \leq p < \infty$. Then $A \in \ell_p(C^\sigma)$ if and only if

$$
\sum_m (\sum_k |\alpha(n, k, m)|)^p < \infty,
$$

uniformly in n, where $\ell_p(C^\sigma)$ is the special case of $\ell(C^\sigma, p)$, for $p_m = p$, for all m.

In Chapter IV we define some new sequence spaces of σ-bounded variation as given below.

Let us write, for $m \geq 1$,

$$
\sigma_{mn}^\sigma(x) = t_{mn}^\sigma(x) - t_{m-1,n}^\sigma(x).
$$

Then, we have

$$
\phi_{mn}^\sigma(x) = \frac{1}{m(m+1)} \sum_j \sum_{i=1}^\infty j \left[x_{\sigma^i(n)} - x_{\sigma^{i-1}(n)} \right],
$$

and if, for a given infinite series $\sum z_n$, denoted by z,

$$
x_n = z_0 + z_1 + z_2 + \cdots + z_n.
$$

then, we also write

$$
\phi_{mn}^\sigma \equiv \sigma_{mn}^\sigma(z) = \frac{1}{m(m+1)} \sum_j \sum_{i=1}^\infty h_j \left[\sum_{i=d_j} z_i \right],
$$

with $d_j = \sigma^{j-1}(n) + 1$ and $h_j = \sigma^j(n)$.

We define:
C(p,3) := \{ z^d : \sup_{m,n} | C^m n_s > 0 \};

\mathcal{C}(p,s) := \{ z \in C : \sum_{m=1}^{\infty} m^{-s} | \phi_m s | < \infty \}

uniformly in n, s \geq 0};

and

\tilde{\mathcal{C}}(p,s) := \{ z \in \mathcal{C}(p,s) : \sup_{n} \sum_{m=1}^{\infty} m^{-s} | \phi_m s | < \infty \}.

We establish the following theorems:

Theorem 4.1. \(\mathcal{C}(p,s) \subset \tilde{\mathcal{C}}(p,s) \).

Theorem 4.2. \(\mathcal{C}(p,s) \) is a complete linear topological space paranormed by:

\[G^*(z) = \sup_{m} \left(\sum_{m=1}^{\infty} m^{-s} | \phi_m s | \right)^{1/M}, \]

where \(M = \max(1, \sup p_m) \).

Theorem 4.3. Suppose \(p \) is bounded away from 0. Then

(i) \(\tilde{\mathcal{C}}(p,s) \) is a complete linear topological space paranormed by the function \(G^* \) defined by (4.2.1);

(ii) \(\mathcal{C}(p,s) \) is a closed subspace of \(\tilde{\mathcal{C}}(p,s) \);

(iii) if, for all \(m; p_m \leq q_m \), then \(\mathcal{C}(p,s) \subset \mathcal{C}(q,s) \); and \(\tilde{\mathcal{C}}(p,s) \subset \tilde{\mathcal{C}}(q,s) \).

Theorem 4.4. If \(\inf_{p_m} > 0 \), then \(\mathcal{C}_\infty(p,s) \) is a complete linear topological space over the complex field \(\mathcal{C} \), paranormed by:

\[g(z) = \sup_{m,n} \left\{ m^{-s/M} | \phi_m n_s(z) | p_m \right\}^{1/M}, \]

where \(M = \max(1, \sup_{m} p_m) \).

Theorem 4.5. Let \(0 < p_m \leq q_m \), then \(\mathcal{C}_\infty(p,s) \) is a closed subspace of \(\mathcal{C}_\infty(p,s) \).
Theorem 4.6. $\mathcal{L}_\infty^0(p, s)$ is 1-convex.

Theorem 4.7. Let $p \in \ell_\infty$. Then $A \in (c_0(p), \mathcal{L}_\infty^0(p, s))$ if and only if there is an absolute constant $B > 1$, such that

$$D = \sup_{m,n} \left[m^{-s/p_m} \sum_k |\alpha(n, k, m) | B^{-1/p_k} \right]^{p_m} < \infty.$$

Theorem 4.8. $A \in (\ell_\infty(p), \mathcal{L}_\infty^0(s))$ if and only if for every integer $N > 1$,

$$\sup_{m,n} \left\{ m^{-s} \sum_k |\alpha(n, k, m) | N^{-1/p_k} \right\} < \infty,$$

where $\mathcal{L}_\infty^0(s)$ is the special case of $\mathcal{L}_\infty^0(p, s)$, for $p_m = p$, for all m.

Theorem 4.9. $A \in (\ell(p), \mathcal{L}_\infty^0(s))$ if and only if there exists an integer $N > 1$, such that

$$\sup_{m,n} \left\{ m^{-s} \sum_k |\alpha(n, k, m) | q_k N^{-1/q_k} \right\} < \infty,$$

for $1 < p_k < \infty, 1/p_k + 1/q_k = 1$; and

$$\sup_{m,n} \left\{ m^{-s} \sum_k |\alpha(n, k, m) | p_k \right\} < \infty,$$

for $0 < p_k \leq 1$.

In Chapter V we study the topological properties and mapping theorems for our new spaces $\mathcal{L}_\infty^0(s)$ and $\mathcal{L}_\infty^0(p, s)$ and prove some theorems.

For any sequence $x = (x_n) \in \mathcal{w}$ and for any given sequence $B = (B_i)$ of infinite matrices with $B_i = (b_{nk}(i))$, we write

$$t^B_n(x) = (B_i x)_n = \sum_k b_{nk}(i)x_k$$

and let x_n be the nth partial sum of a given series $\sum z_n$ (denoted by z), so that

$$x_n = z_0 + z_1 + \cdots + z_n$$

and

$$x_n - x_{n-1} = z_n.$$
Then, for \(n \geq 0 \), we have

\[
\psi_{in}(z) = t_{in}^G(x) - t_{i,n-1}^G(x)
\]

\[
= \sum_{k=0}^{\infty} \left\{ b_{nk}(i) - b_{n-1,k}(i) \right\} x_k
\]

\[
= \sum_{k=0}^{\infty} \Delta b_{nk}(i) x_k
\]

\[
= \sum_{v=0}^{\infty} \left\{ \sum_{k=v}^{\infty} \Delta b_{nk}(i) \right\} z_v,
\]

\[
= \sum_{v=0}^{\infty} g(n,v,i) z_v,
\]

where

\[
g(n,v,i) = \sum_{k=v}^{\infty} \Delta b_{nk}(i),
\]

and

\[
\Delta b_{nk}(i) = \{ b_{nk}(i) - b_{n-1,k}(i) \}.
\]

Let \(p = (p_n) \) be a sequence of strictly positive real numbers with \(\sup p_n < \infty \). Then we define

\[
\mathcal{L}_\infty^G(p,s) := \left\{ z \in \mathbb{C} : \sup_{n,\mathbf{i},n} n^{-s} |\psi_{in}(z)| p_n < \infty, s \geq 0 \right\}.
\]

We write

\[
\psi_{in}(Az) = \sum_{j=0}^{\infty} \sum_{v=0}^{\infty} \sum_{k=v}^{\infty} \Delta b_{nk}(i) a_{vj} z_j
\]

\[
= \sum_{j=0}^{\infty} \sum_{v=0}^{\infty} g(n,v,i) a_{vj} z_j
\]

\[
= \sum_{j=0}^{\infty} g^*(n,j,i) z_j,
\]

where

\[
g^*(n,j,i) = \sum_{v=0}^{\infty} g(n,v,i) a_{vj},
\]

provided that the infinite sums involved exist.

We prove the following theorems.
Theorem 5.1. If \(\inf p_n > 0 \), then \(\mathcal{L}_\infty^g(p, s) \) is a complete linear topological space over the complex field \(\mathbb{C} \), paranormed by:

\[
g(z) = \sup_{i, n} n^{-s/M} |\psi_{in}(z)|^{p_n/M},
\]

for all \(z \in \mathcal{L}_\infty^g(p, s) \), where \(M = \max(1, \sup_n p_n) \). In particular, \(\mathcal{L}_\infty^g(s) \) is a Banach space normed by

\[
\| z \| = \sup_{i, n} n^{-s} |\psi_{in}(z)|,
\]

where \(\mathcal{L}_\infty^g(s) \) is the special case of \(\mathcal{L}_\infty^g(p, s) \), for \(p_n = p \), for all \(n \).

Theorem 5.2. Let \(0 < p_n \leq q_n \). Then \(\mathcal{L}_\infty^g(q, s) \) is a closed subspace of \(\mathcal{L}_\infty^g(p, s) \).

Theorem 5.3. \(\mathcal{L}_\infty^g(p, s) \) is 1-convex.

Theorem 5.4. \(A \in (\ell_\infty, \mathcal{L}_\infty^g(s)) \) if and only if

\[
\sup_{i, n} n^{-s} \sum_{j=0}^{\infty} |g^*(n, j, i)| < \infty.
\]

Theorem 5.5. \(A \in (\ell_\infty(p), \mathcal{L}_\infty^g(s)) \) if and only if

\[
\sup_{i, n} n^{-s} \sum_{j=0}^{\infty} |g^*(n, j, i)|^{L^{1/p_j}} < \infty,
\]

for every integer \(L > 1 \).

Theorem 5.6. Let \(\inf p_n > 0 \). Then \(A \in (\ell_\infty, \mathcal{L}_\infty^g(p, s)) \) if and only if

\[
\sup_{i, n} n^{-s} \left(\sum_{j=0}^{\infty} |g^*(n, j, i)|^{p_n} \right)^{p_n} < \infty.
\]

Theorem 5.7. \(A \in (\ell(p), \mathcal{L}_\infty^g(s)) \) if and only if

(i) there exists an integer \(K > 1 \) such that

\[
\sup_{i, n} n^{-s} \sum_{j=0}^{\infty} |g^*(n, j, i)|^{q_k} K^{-q_k} < \infty, \quad (1 < p_k < \infty, \: p_k^{-1} + q_k^{-1} = 1),
\]
Theorem 5.8. \(A \in (c_0(p), L^\infty(p,s)) \) if and only if there exists an integer \(K > 1 \), such that
\[
\sup_{i,n} n^{-s} \left(\sum_k \left| g^*(n,j,i) \left| K^{-1/p_k} \right. \right)^{p_n} < \infty.
\]

In Chapter VI we define some new spaces and prove some theorems concerning spaces of \(B \)-bounded variation and spaces related to them.

We define the spaces:
\[
L^B(p,s) := \left\{ z \in c^B : \sum_n n^{-s} \left| \psi_{in}(z) \right|^{p_n} < \infty, \text{ uniformly in } i, \text{ and for } s \geq 0 \right\}
\]
\[
\hat{L}^B(p,s) := \left\{ z \in L^B(p,s) : \sup_i \sum_n n^{-s} \left| \psi_{in}(z) \right|^{p_n} < \infty \right\}
\]

Theorem 6.1. If \(p = (p_n) \) is bounded, then \(L^B(p,s) \) is a complete linear topological space over the complex field \(\mathbb{C} \), paranormed by \(g \) defined by
\[
g(z) = \sum_n n^{-s/M} \left| \psi_{in}(z) \right|^{p_n/M},
\]
for all \(z \in L^B(p,s) \), where \(M = \max(1,\sup p_n) \). In particular, \(L^B_p(s) \) is a Banach space normed by
\[
\| z \| = \sum_n n^{-s} \left| \psi_{in}(z) \right|^p,
\]
where \(L^B_p(s) \) is the special case of \(L^B(p,s) \), for \(p_n = p \), for all \(n \).

Theorem 6.2. \(L^B(p,s) \subseteq L^\infty(p,s) \).

Theorem 6.3. Let \(B = (B_i) \) be a sequence of infinite matrices with \(B_i = (b_{nk}(i)) \), such that \(\sum_k |b_{nk}(i)| < \infty \), for all \(i, n = 0,1,2,\ldots \). Then
\[
L^B(p,s) \subseteq \hat{L}^B(p,s).
\]

Theorem 6.4. If \(\inf p_n > 0 \), then \(L^B(p,s) \) is locally bounded.
Theorem 6.5. If \(\inf p_n > 0 \), then \(\mathcal{L}^G(p, s) \) is 1-convex. If \(\inf p_n \leq 1 \), then \(\mathcal{L}^G(p, s) \) is not 1-convex.

Theorem 6.6. Let \(1 \leq p < \infty \). Then \(A \in (\ell_1, \mathcal{L}^G_p(s)) \) if and only if

\[
(6.6.1) \quad \sup_k \sum_n n^{-s} | \triangle g^*(n, k, i) |^p < \infty,
\]

uniformly in \(i \).

Theorem 6.7. \(A \in (\ell_1, \mathcal{L}^G(p, s)) \) if and only if (6.6.1) with \(p = 1 \) holds and

\[
\sum_n n^{-s} \triangle g^*(n, k, i) = 1,
\]

for all \(i, k \).

Theorem 6.8. \(z \in \mathcal{L}^G(p, s) \) implies that there exists a constant \(Q > 0 \) such that

\[
\sum_n n^{-s} | \psi_n(z) |^p n \leq Q,
\]

for all \(i \).

Theorem 6.9. Let \(1 \leq p < \infty \). Then \(A \in (\ell_\infty, \mathcal{L}^G_p(s)) \) if and only if

\[
\sum_n n^{-s} \left(\sum_k | \triangle g^*(n, k, i) | \right)^p < \infty,
\]

uniformly in \(i \).

Theorem 6.10. Let \(1 \leq p < \infty \). Then \(A \in (\ell_\infty, (p), \mathcal{L}^G_p(s)) \) if and only if, for every integer \(L > 1 \),

\[
\sum_n n^{-s} \left(\sum_k | \triangle g^*(n, k, i) | \right)^p < \infty,
\]

uniformly in \(i \).

Theorem 6.11. Let \(1 < p_k < \infty \). Then \(A \in (\ell_\infty(p), \mathcal{L}^G(p, s)) \) if and only if, for every integer \(L > 1 \),

\[
\sum_n n^{-s} \left(\sum_k | \triangle g^*(n, k, i) | \right)^{p_n} < \infty,
\]
uniformly in i.

In Chapter VII we recall that a sequence $x \in \ell_\infty$ is said to be B-summable if
\[t_{in}^B (x) \equiv (B; x) n = \sum_k b_{nk}(i)x_k \]
converges as $n \to \infty$, uniformly in $i = 0, 1, 2, \ldots$.

We define the difference sequence spaces generated by the summability B, by:
\[
(B, p; u, \Delta) := \{ x \in \ell_\infty : |t_{in}^B(u \Delta x - le)|^n \to 0, \text{ as } n \to \infty, \\
\text{uniformly in } i, \text{ for some } l \in \mathbb{C} \},
\]
\[
(B, p; u, \Delta)_0 := \{ x \in \ell_\infty : |t_{in}^B(u \Delta x)|^n \to 0, \text{ as } n \to \infty, \\
\text{uniformly in } i \},
\]
\[
(B, p; u, \Delta)_\infty := \{ x \in \ell_\infty : \sup_{i,n} |t_{in}^B(u \Delta x)|^n < \infty \}.
\]

We prove the following theorems:

Theorem 7.1. $(B, p; u, \Delta) \subset (B, p; u, \Delta)_\infty$ if and only if
\[
(7.1.1) \quad \sup_{i,n} |\sum_k b_{nk}(i)|^n \to 0,
\]
holds.

Theorem 7.2. $(B, p; u, \Delta), (B, p; u, \Delta)_0$ and $(B, p; u, \Delta)_\infty$ are linear spaces over the complex field \mathbb{C}.

Theorem 7.3. $(B, p; u, \Delta)_0$ is a linear topological space paranormed by g defined by:
\[
(7.3.1) \quad g(x) = \sup_{0 \leq i < \infty, r \leq n < \infty} \left| \sum_k b_{nk}(i)u_k \Delta x_k \right|^n,
\]
for a whole number $r \geq 0$. $(B, p; u, \Delta)_\infty$ is paranormed by g if $\inf p_n > 0$. If $(7.1.1)$ holds, then $(B, p; u, \Delta)$ is paranormed with the same paranorm g.
Theorem 7.4. \((B, p; u, \Delta)_0\) and \((B, p; u, \Delta)_\infty\) (if \(p_n > 0\)) are complete with respect to the topology generated by the paranorm \(g^*\) defined by
\[
g^*(x) = \sup_{0 \leq i < \infty, \, r \leq n < \infty} \left| \sum_k b_{nk}(i) u_k \Delta x_k \right|^{p_n},
\]
\((r\) is the same as in (7.3.1)). If
\[
\left| \sum_k b_{nk}(i) \right|^{p_n} \to 0, \quad \text{as} \quad n \to \infty.
\]
uniformly in \(i\), holds, then \((B, p; u, \Delta)\) is complete with respect to \(g^*\).

Theorem 7.5. \((B, q; u, \Delta)_0 \subset (B, p; u, \Delta)_0\), if
\[
\lim \inf \frac{p_n}{q_n} > 0.
\]

Theorem 7.6. If \(0 < p_n < q_n \leq 1\), then \((B, q; u, \Delta)_\infty\) is a closed subspace of \((B, p; u, \Delta)_\infty\).

Theorem 7.7. \((B, p; u, \Delta)_0\) and \((B, p; u, \Delta)_\infty\) are locally bounded if \(\inf p_n > 0\). If (7.1.1) holds, then \((B, p; u, \Delta)\) has the same property.

Theorem 7.8. \((B, p; u, \Delta)_0\) and \((B, p; u, \Delta)_\infty\) are \(r\)-convex for all \(r\), where \(0 < r < \inf p_n\). Moreover, if \(p_n = p \leq 1\), for all \(n\), then they are \(p\)-convex.

In Chapter VIII we prove some theorems concerning some new sequences defined by Orlicz functions.

Let \(u = (u_k)\) be an arbitrary sequence such that \(u_k \neq 0\) \((k = 1, 2, \ldots)\). We define the space:
\[
\ell_M(p, u) := \left\{ x \in w : \sum_{k=1}^{\infty} \left[M \left(\frac{|u_k x_k|}{\rho} \right) \right]^{p_k} < \infty, \quad \text{for some} \quad \rho > 0 \right\}.
\]

Let \(p = (p_n), \, q = (q_n)\) and \(\bar{q} = (\bar{q}_n)\) denote the sequences of positive real numbers and the sequence \(\bar{Q} = (\bar{Q}_n)\) is such that
\[
\bar{Q}_n = \bar{q}_1 + \bar{q}_2 + \cdots + \bar{q}_n \neq 0.
\]

For a sequence \(x = (x_n)\), we write
\[
i_n^*(x, \rho) = \frac{1}{\bar{Q}_n} \sum_{k=1}^{n} \bar{q}_k \left[M \left(\frac{|x_k|}{\rho} \right) \right]^{p_k}, \quad \text{for some} \quad \rho > 0.
\]
Then we define the new spaces:

\[W(M, q; p, u) := \{ x \in w : \ell_n^*(ux, \rho) \to 0, \text{ as } n \to \infty, \text{ for some } \rho > 0 \text{ and } l \in \mathbb{C} \}, \]

\[W_0(M, q; p, u) := \{ x \in w : \ell_n^*(ux, \rho) \to 0, \text{ as } n \to \infty, \text{ for some } \rho > 0 \} \]

and

\[W_\infty(M, q; p, u) := \left\{ x \in w : \sup_n \ell_n^*(ux, \rho) < \infty, \text{ for some } \rho > 0 \right\}. \]

We prove the following theorems:

Theorem 8.1. Let \(H = \sup_k p_k \). Then \(\ell_M(p, u) \) is a linear space over the complex field \(\mathbb{C} \).

Theorem 8.2. \(\ell_M(p, u) \) is total paranormed space with paranorm defined by:

\[
\text{(8.2.1)} \quad h(x) = \inf_n \left\{ \rho^{p_n/H} : \left(\sum_{k=1}^\infty \left[M \left(\frac{|u_k x_k|}{\rho} \right) \right]^{p_k} \right)^{1/H} \leq 1, n = 1, 2, \ldots \right\}.
\]

where \(H = \max(1, \sup_k p_k) \).

Theorem 8.3. Let \(1 \leq p_k < \sup_k p_k < 1 \). Then \(\ell_M(p, u) \) is complete paranormed space with paranorm defined by (8.2.1).

Theorem 8.4. Let \(0 < p_k \leq q_k < \infty \), for each \(k \). Then

\[\ell_M(p, u) \subseteq \ell_M(q, u). \]

Theorem 8.5. Let \(p \) be bounded. Then \(W(M, \bar{q}; p, u), W_0(M, \bar{q}; p, u), \) and \(W_\infty(M, \bar{q}; p, u) \) are linear spaces.

Theorem 8.6. Let \(H = \sup_k p_k \). Then \(W_0(M, \bar{q}; p, u) \) is a linear topological space paranormed by \(h^* \) defined by

\[
h^*(x) = \inf_n \left\{ \rho^{p_n/H} : \left(\frac{1}{Q_n} \sum_{k=1}^n \bar{q}_k \left(M \left(\frac{|u_k x_k|}{\rho} \right) \right)^{p_k} \right)^{1/H} \leq 1, n = 1, 2, \ldots \right\}.
\]
Theorem 8.7. Let M be an Orlicz function which satisfies Δ_2-condition.

Then $W(\tilde{q}; u) \subseteq W(M, \tilde{q}; u), W_0(\tilde{q}; u) \subseteq W_0(M, \tilde{q}; u)$ and $W_\infty(\tilde{q}; u) \subseteq W_\infty(M, \tilde{q}; u)$.

Theorem 8.8

(i) Let $0 < \inf p_k \leq p_k < 1$. Then $W(M, \tilde{q}; p, u) \subseteq W_\infty(M, \tilde{q}; u)$.

(ii) Let $1 \leq p_k < \sup p_k < \infty$. Then $W(M, \tilde{q}; u) \subseteq W(M, \tilde{q}; p, u)$.

Theorem 8.9. Let $0 < p_k \leq q_k$, and (q_k/p_k) be bounded. Then

$W(M, \tilde{q}; q, u) \subseteq W(M, \tilde{q}; p, u)$.

Finally, in Chapter IX we prove some theorems on summability of trigonometric sequences by sequence of infinite matrices generalizing some known results.

Let $f(x)$ be a periodic function, with period 2π, and integrable (L), that is, integrable in the sense of Lebesgue over $(-\pi, \pi)$. Let the Fourier series of $f(x)$ be given by:

$$
\frac{1}{2} a_0 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx).
$$

Then the series conjugate to it is:

$$
\sum_{k=1}^{\infty} (b_k \cos kx - a_k \sin kx)
$$

and its derived series is:

$$
\sum_{k=1}^{\infty} k(b_k \cos kx - a_k \sin kx).
$$

Let $s_n(x)$ and $s'_n(x)$ denote the partial sums of the series (9.1) and (9.2) respectively. We write

$$
\psi_x(t) = \psi(f, t) = \begin{cases}
 f(x + t) - f(x - t) & 0 < t \leq \pi, \\
 g(x) & t = 0,
\end{cases}
$$

where $g(x) = \{f(x + 0) - f(x - 0)\}$.
and
\[h_x(t) = \frac{\psi_x(t)}{4\sin \frac{t}{2}}. \]

Let \(B = (B_i) \), with \(B_i = (b_{nk}(i)) \), be a sequence of infinite matrices. Then, a sequence \(x = (x_n) \in l_\infty \) is said to be \(B \)-(or \(F_B \))-convergent or summable \(B \) to the generalized limit \(Bx \), if
\[
\lim_{n \to \infty} (B_i x)_n = \lim_{n \to \infty} \sum_{k=0}^{\infty} b_{nk}(i)x_k
\]
\[= \text{Lim } Bx, \text{ uniformly for } i = 0, 1, 2, \ldots. \]

We establish the following theorems.

Theorem 9.1. Let \(B = (B_i) \) be a family of matrices, with
\[(9.1.1) \quad N(B_i) < \infty, \quad \text{for each } i.\]

Let \(A = (a_{nk}) \) be a \(B \)-(or \(F_B \))-regular matrix, i.e. \(A \in (c,B)_{\text{reg}} \). Then, for every \(x \in [-\pi, \pi] \) for which \(h_x(t) \in BV[0, \pi] \),
\[
\lim_n \sum_l \sum_k b_{nk}(i) a_{kl} s_l(x) = h_x(0^+),
\]
uniformly in \(i \) if and only if
\[
\lim_n \sum_l \sum_k b_{nk}(i) a_{kl} \sin(l + \frac{1}{2})t = 0.
\]

Theorem 9.2. Let \(B = (B_i) \) be a family of matrices with the condition (9.1.1).

Let \(A = (a_{nk}) \) be a \(B \)-regular matrix, i.e. \(A \in (c,B)_{\text{reg}} \). Then, for each \(x \in [0, 2\pi] \), for which \(f(x) \in BV[0, 2\pi] \),
\[
\lim_n \sum_l \sum_k b_{nk}(i) a_{kl} s_l(x) = \pi^{-1} g(x),
\]
uniformly in \(i \) if and only if
\[
\lim_n \sum_l \sum_k b_{nk}(i) a_{kl} \cos kt = 0,
\]
for all \(t \in [0, \pi], \delta > 0, \text{ uniformly in } i. \)