CHAPTER I
PRELIMINARIES

The primary aim of this section is to recall some basic notations and definitions which shall be used throughout the dissertation.

1.1. NOTATIONS

\(\mathbb{N} := \) The set of all natural numbers.

\(\mathbb{R} := \) The set of all real numbers.

\(\mathbb{C} := \) The set of all complex numbers.

\(\lim \) : means \(\lim_{k \to \infty} \)

\(\sup \) : means \(\lim_{k \geq 1} \)

\(\inf \) : means \(\inf_{k \geq 1} \), unless otherwise stated

\(\sum \) : means summation over \(k = 1 \) to \(k = \infty \), unless otherwise stated.

\(x := (x_k) \), the sequence whose \(k^{th} \) term is \(x_k \)

\(\theta := (0, 0, 0, ...) \), the zero sequence.

\(e_k := (0, 0, ..., 1, 0, 0, ...) \), the sequence whose \(k^{th} \) component is 1 and others are zeroes, for all \(k \in \mathbb{N} \)

\(e := (1, 1, 1, 1,) \)

\(p := (p_k) \), the sequence of strictly positive reals.

\(w := \{ x = (x_k) : x_k \in \mathbb{R} \) (or \(\mathbb{C} \)\} \), the space of all sequences, real or complex.

\(l := \{ x \in w : \sum_k |x_k| < \infty \} \)
\(l_\infty := \{ x \in w : \sup_k |x_k| < \infty \} \), the space of bounded sequences.

\(c_0 := \{ x \in w : \lim_k |x_k| = 0 \} \), the space of null sequences.

\(c := \{ x \in w : \lim_k x_k = l, \text{ for some } l \in C \} \), the space of convergent sequences.

Remark 1.1.1. \(l_\infty, c_0, \) and \(c \) are Banach spaces with the usual norm \(\|x\| = \sup_k |x_k| \)

\(l_1 := \{ a = (a_k) : \sum_k |x_k| < \infty \} \), the space of absolutely convergent series.

\(l_p := \{ x \in w : \sum_k |x_k|^p < \infty \}, \text{ where } 0 < p < \infty \)

\(w_p := \{ x \in w : \lim\frac{1}{n} \sum_k |x_k - l|^p = 0; \text{ for some } l \in C \} \)

Case-I If \(1 \leq p < \infty \), the spaces \(l_p \) and \(w_p \) are Banach spaces normed by

\[\|x\| = \left(\sum_k |x_k|^p \right)^{\frac{1}{p}} \]

and

\[\|x\| = \sup \left(\frac{1}{n} \sum_{k=1}^n |x_k|^p \right)^{\frac{1}{p}}, \]

respectively.

Case-II If \(0 < p < 1 \), then \(l_p \) and \(w_p \) are complete \(p \)-normed spaces, \(p \)-normed by

\[\|x\| = \sum_k |x_k|^p \]

and

\[\|x\| = \frac{1}{n} \sum_k |x_k|^p, \]

respectively.

The following subspaces of \(w \) were first introduced and discussed by Simons [51], and Maddox [36].
Let $p = (p_k)$ be bounded. Then $C_0(p)$ is a linear metric space paranormed by:

$$g_1(x) = \sup_k |x_k|^{p_k},$$

where $M = \max(1, \sup_k p_k)$. $l_\infty(p)$ and $C(p)$ are paranormed by $g_1(x)$, defined above if and only if $\inf_k p_k > 0$. $l(p)$ and $w(p)$ are paranormed by:

$$g_2(x) = \left(\sum_k |x_k|^{p_k}\right)^{\frac{1}{p_k}},$$

respectively.

Remark 1.1.2. If $p_k = p$, for all k, then $l_\infty(p) = l_\infty$, $C_0(p) = C_0$, $C(p) = C$, $l(p) = l$ and $w(p) = w_p$.

1.2. DIFFERENCE SEQUENCE SPACES

The idea of difference sequence spaces was first introduced by Kizmaz [27] in the year 1981 and was generalised by Et. and Colak [10] in the year 1995. Kizmaz [27] defined the sequence spaces:

$$l_\infty(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in l_\infty\},$$
\[c(\Delta) = \{ x = (x_k) \in w : (\Delta x_k) \in c \}, \]

and

\[c_0(\Delta) = \{ x = (x_k) \in w : (\Delta x_k) \in c_0 \}, \]

where \(\Delta x = (x_k - x_{k+1}) \). These are Banach spaces with the norm

\[||x||_\Delta = |x_1| + ||\Delta x||_\infty. \]

After then Colak and Et [8] defined the sequence spaces:

\[l_\infty(\Delta^m) = \{ x = (x_k) \in w : (\Delta^m x_k) \in l_\infty \}, \]

\[c(\Delta^m) = \{ x = (x_k) \in w : (\Delta^m x_k) \in c \}, \]

and

\[c_0(\Delta^m) = \{ x = (x_k) \in w : (\Delta^m x_k) \in c_0 \}, \]

where \(m \in \mathbb{N} \) and

\[\Delta^0 x = (x_k), \quad \Delta^m x = (\Delta^{m-1} x_k - \Delta^{m-1} x_{k+1}), \]

\[\Delta x = (x_k - x_{k+1}), \quad \Delta^m x_k = \sum_{i=0}^{m} (-1)^i \binom{m}{i} x_{k+i}. \]

and showed that these spaces are Banach spaces with the norm

\[||x||_\Delta = \sum_{i=1}^{m} |x_i| + ||\Delta^m x||_\infty. \]

These spaces were generalised by Et and Basarir [15].

Esi and Isik [13] defined the sequence spaces:

\[l_\infty(\Delta^m, s, p) = \{ x = (x_k) \in w : \sup_k k^{-s} |\Delta^m x_k|^p \leq \infty, \ s \geq 0 \}, \]

\[c(\Delta^m, s, p) = \{ x = (x_k) \in w : k^{-s} |\Delta^m x_k - L|^p \to 0, (k \to \infty), \ s \geq 0, \text{ for some } L \}, \]

\[c_0(\Delta^m, s, p) = \{ x = (x_k) \in w : k^{-s} |\Delta^m x_k|^p \to 0, (k \to \infty), \ s \geq 0 \}, \]
where \(v = (v_k) \) is any fixed sequence of non zero complex numbers and \(m \in \mathbb{N} \) is fixed and

\[
\begin{align*}
\Delta^0_v x_k &= (v_k x_k), \\
\Delta^m_v x_k &= (\Delta^{m-1}_v x_k - \Delta^{m-1}_v x_{k+1}), \\
\Delta_v x_k &= (v_k x_k - v_{k+1} x_{k+1}), \\
\Delta^m_v x_k &= \sum_{i=0}^{m} (-1)^i \binom{m}{i} v_{k+i} x_{k+i}.
\end{align*}
\]

Remark 1.2.1. If \(s = 0, m = 1, v = (1, 1, 1, \cdots) \) and \(p_k = 1 \) for all \(k \in \mathbb{N} \), we have \(l_\infty(\Delta), c(\Delta) \) and \(c_0(\Delta) \), which were defined by Kizmaz [27].

If \(s = 0 \) and \(p_k = 1 \) for all \(k \in \mathbb{N} \), we have the following sequence spaces which were defined by Et and Esi [12].

\[
\begin{align*}
l_\infty(\Delta^m_v) &= \{ x = (x_k) \in w : (\Delta^m_v x_k) \in l_\infty \}, \\
c(\Delta^m_v) &= \{ x = (x_k) \in w : (\Delta^m_v x_k) \in c \}, \\
c_0(\Delta^m_v) &= \{ x = (x_k) \in w : (\Delta^m_v x_k) \in c_0 \}.
\end{align*}
\]

Difference sequence spaces have also been studied by Bektas and Çolak [2], Et. [11], Khan [22, 23, 24, 25, 26], Ahmad H.A.Bataineh [1], Bilgin [4], Malkowsky [37] and many others.

1.3. DEFINITIONS

Definition 1.3.1. A paranorm is a function \(g : X \to \mathbb{R} \) which satisfies the following axioms: for any \(x, y, x_0 \in X \), and \(\lambda, \lambda_0 \in \mathbb{C} \),

(i) \(g(\theta) = 0; \)

(ii) \(g(x) = g(-x); \)

(iii) \(g(x + y) \leq g(x) + g(y) \)

(iv) the scalar multiplication is continuous, that is \(\lambda \to \lambda_0, x \to x_0 \) imply \(\lambda x \to \lambda_0 x_0 \).
In other words,
\[|\lambda - \lambda_0| \to 0, \quad g(x - x_0) \to 0 \quad \text{imply} \quad g(\lambda x - \lambda_0 x_0) \to 0. \]

A paranormed space is a linear space \(X \) with a paranorm \(g \) and it is written as \((X, g)\). Any function \(g \) which satisfies all the condition (i)-(iv) together with the condition

(v) \(g(x) = 0 \) if and only if \(x = \theta \),

is called a total paranorm on \(X \) and the pair \((X, g)\) is called total paranormed space, (see Maddox [35]).

Example 1.3.1. \(l_p \) is totally paranormed for any \(p = (p_k) \in l_{\infty} \).

Definition 1.3.2. A seminorm is a function \(\nu : X \to \mathbb{R} \), defined on linear space \(X \) such that for all \(x, y \in X \).

(i) \(\nu(x) = 0 \) if \(x = \theta \);

(ii) \(\nu(\alpha x) = |\alpha|\nu(x) \), for all scalars \(\alpha \);

(iii) \(\nu(x + y) \leq \nu(x) + \nu(y) \)

The property expressed by (ii) is called absolute homogeneity of \(\nu \) and that expressed by (iii) is called subadditivity of \(\nu \). Thus, a seminorm is a real subadditive and absolutely homogeneous function on \(X \).

Moreover, it follows from (ii) and (iii) that
\[0 = \nu(\theta) = \nu(x + (-x)) \leq \nu(x) + \nu(-x) = 2\nu(x). \]

Whence a seminorm is necessarily non-negative. Also, a seminorm \(\nu \) is convex on \(X \), since if \(\lambda + \mu = 1, \lambda \geq 0, \mu \geq 0 \) and \(x + y \in X \), then
\[\nu(\lambda x + \mu y) \leq |\lambda|\nu(x) + |\mu|\nu(y) = \lambda \nu(x) + \mu \nu(y) \]

Example 1.3.2. For each \(x \in \mathbb{C} \), \(\nu(x) = |x| \) defines a seminorm on \(\mathbb{C} \).
Example 1.3.3. $\nu_1(x) = \sup |x_n|$ and $\nu_2(x) = |\lim x_n|$ defines seminorms ν_1 and ν_2 on the linear space c of all convergent subsequences $x = (x_n)$.

Remark 1.3.1. Every seminormed space is a paranormed space but not conversely.

Example 1.3.4. Consider the paranorm g on l_p, where $g(x) = \sum |x_k|^p_k$ and $p_k = \frac{1}{k}$, for all $k \in \mathbb{N}$. Let $x=(0,1,0,0,\ldots)$, then $g(2x) \leq 2g(x)$. Thus g is not a seminorm.

If X is a space of complex sequences $x = (x_k)$, we denote the continuous dual of X by X', that is the set of all continuous linear functionals on X.

For a Banach space X, X' is the dual Banach space of continuous linear functionals on X with

$$
\|f\| = \sup\{|f(x)| : \|x\| \leq 1\};
$$

$f \in X'$ if and only if $\|f\| < \infty$;

$$
|f(x)| \leq \|x\|\|f\|.
$$

Definition 1.3.3. A continuous function $M : \mathbb{R} \to \mathbb{R}$ is called convex if

$$
M\left(\frac{u+v}{2}\right) \leq \frac{M(u) + M(v)}{2},
$$

for all $u, v \in \mathbb{R}$.

If in addition, the two sides of above are not equal for $u \neq v$, then we call M to be strictly convex. Also see [28].

Definition 1.3.4. A continuous function $M : \mathbb{R} \to \mathbb{R}$ is said to be uniformly convex if for any $\varepsilon > 0$ and any $u_0 > 0$ there exists $\delta > 0$ such that

$$
M\left(\frac{u+v}{2}\right) \leq (1 - \delta)\frac{M(u) + M(v)}{2},
$$

satisfying $|u - v| \geq \varepsilon \max\{|u|, |v|\} \geq eu_0$.

Remark 1.3.2. If M is convex function and $M(0) = 0$, then $M(\lambda x) \leq \lambda M(x)$ for all λ with $0 < \lambda < 1$.

1.4. SOME INEQUALITIES.

The following inequalities will be used throughout this dissertation.
(1.4.1.) For any $a, b \in \mathbb{C}$,

$$|a + b| \leq |a| + |b|,$$

is called as the Triangle inequality.

(1.4.2.) For all $u, v \in \mathbb{C}$

$$u \cdot v \leq M(u) + N(v),$$

is called as the Young's inequality.

(1.4.3.) If $\rho_M(u) < \infty$ then

$$M\left(\frac{1}{\mu G} \int_G u(t) dt\right) \leq \frac{1}{\mu G} \int_G M(u(t)) dt,$$

is called as the Jensen's inequality.

(1.4.4.) Let $p = (p_k)$ be a sequence of positive real numbers with $0 < p_k \leq \sup p_k = G$ and let $D = \max(1, 2^{G-1})$. For $a_k, b_k \in \mathbb{C}$, the set of complex numbers, for all $k \in \mathbb{N}$, we have (from Maddox [32]),

$$|a_k + b_k|^p_k \leq D\left(|a_k|^p_k + |b_k|^p_k\right).$$

1.5. SEQUENCE OF ORLICZ FUNCTIONS.

Definition 1.5.1. An Orlicz function is a function $M : [0, \infty) \to [0, \infty)$ which satisfies the following properties:

(i) M is continuous, non-decreasing and convex

(ii) $M(0) = 0$, $M(x) > 0$ for $x > 0$ and

(iii) $M(x) \to \infty$, as $x \to \infty$.

If convexity of M is replaced by $M(x + y) \leq M(x) + M(y)$, then it is called a Modulus function, defined and discussed by Ruckle [46], Maddox [36] and many others.
Definition 1.5.2. The integral form of an Orlicz function is given as

\[M(x) = \int_0^{|x|} p(t) \, dt. \]

where \(p \) is the right derivative of \(M \) and satisfies

(i) \(p \) is right continuous and non decreasing.

(ii) \(p(t) > 0 \) whenever \(t > 0 \) and \(p(0) = 0 \)

(iii) \(\lim_{t \to \infty} p(t) = \infty. \)

Definition 1.5.3. Let \(p \) be the right derivative of \(M \), then

\[q(s) = \sup \{ t : p(t) \leq s \} \]

is called as the right inverse function of \(p \). Let \(M \) be an Orlicz function and \(p \) be the right derivative of \(M \) and \(q \) be the right inverse function of \(p \). Then

\[N(v) = \int_0^{|v|} q(s) \, ds \]

is called as the complementary function of \(M \).

Definition 1.5.4. If to every positive integer \(n \), there is assigned a number \(a_n \), then the collection \((a_1, a_2, ..., a_n, a_{n+1}, ...) \) is said to be a sequence, denoted as \((a_n) \). A Sequence of Orlicz functions is a similar collection of Orlicz functions \(M_k \) where \(k = 1, 2, 3, ... \) and is denoted by \((M_k) \).

1.6. MODULAR SPACES AND ORLICZ SPACES.

Let \(X \) be a real vector space. A functional \(\rho : X \to [0, \infty] \) is called a modular if

(i) \(\rho(x) = 0 \) if and only if \(x = \theta \);

(ii) \(\rho(\alpha x) = \rho(x) \) for all scalar \(\alpha \) with \(|\alpha| = 1 \);
(iii) $\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y)$, for all $x, y \in X$ and $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$.

We always denote by (G, Σ, μ), the lebesgue measure space in a Euclidean space with $0 < \mu G < \infty$ and by M and N a pair of Orlicz functions complementary to each other. Moreover, for a measurable function u on G, we introduce its modular by

$$\rho_M(u) = \int_G M(u(t))dt.$$

Then the Orlicz space L_M and its subspace E_M are defined as follows:

$$L_M = \{u : \rho_M(\lambda u) < \infty \text{ for some } \lambda > 0\},$$

$$E_M = \{u : \rho_M(\lambda u) < \infty \text{ for all } \lambda > 0\}.$$

If ρ is a modular in X, we define

$$X_\rho = \{x \in X : \lim_{\lambda \to 0^+} \rho(\lambda x) = 0\}$$

and

$$X_\rho^* = \{x \in X : \rho(\lambda x) < \infty \text{ for some } \lambda > 0\}.$$

It is clear that $X_\rho \subseteq X_\rho^*$. If ρ is a convex modular, for $x \in X_\rho$ we define

$$||x|| = \inf\{\lambda > 0 : \rho(\frac{x}{\lambda}) \leq 1\}. \quad (1.6.1)$$

It is known that if ρ is a convex modular on X, then $X_\rho = X_\rho^*$ and $||.||$ is a norm on X_ρ for which it is a Banach space. The norm $||.||$ defined as in equation (1.6.1) is called as the Luxemburg norm. The following known results give some relationships between the modular ρ and the Luxemburg norm $||.||$ on X_ρ.

Theorem 1.6.1. (see [34], theorem 1.4) Let ρ be a convex modular on X and let $x \in X_\rho$ and (x_n) be a sequence in X_ρ. Then $||x_n - x|| \to 0$ as $n \to \infty$ if and only if $\rho(\lambda(x_n - x)) \to 0$ as $n \to \infty$, for every $\lambda > 0$.

Theorem 1.6.2. (see [34], theorem 1.4) Let ρ be a continuous convex modular on X. Then

(i) $||x|| < 1$ if and only if $\rho(x) < 1$,
(ii) \(\|x\| \leq 1 \) if and only if \(\rho(x) \leq 1 \),

(iii) \(\|x\| = 1 \) if and only if \(\rho(x) = 1 \).

Note that an Orlicz function satisfies the inequality
\[
M(\lambda x) \leq \lambda M(x) \quad \text{for all } \lambda \text{ with } 0 < \lambda < 1.
\]

Lindenstrauss and Tzafriri [30] used the idea of Orlicz sequence space;
\[
l_M := \left\{ x \in w : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) < \infty, \text{ for some } \rho > 0 \right\}
\]
which is Banach space with the norm the norm
\[
\|x\|_M = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) \leq 1 \right\}.
\]

For more details on Orlicz sequence spaces we refer to [3], [30], [33], [42] and [43].

Remark 1.6.1. If \(M \) is convex function and \(M(0) = 0 \), then \(M(\lambda x) \leq \lambda M(x) \) for all \(\lambda \) with \(0 < \lambda < 1 \).

We say that an Orlicz function \(M \) satisfies the \(\Delta_2 \) condition (see Krasnoselskii et al. [28]) or \(M \in \Delta_2 \) for short) if there exist constant \(k \geq 2 \) and \(u_0 > 0 \) such that
\[
M(2u) \leq KM(u) \quad \text{whenever } |u| \leq u_0.
\]

Proposition 1.6.1. Let \(M \) be an Orlicz function and \(x \in l_M \).

(i) If \(\|x\| \leq 1 \), then \(\varrho \leq \|x\| \).

(ii) If \(\|x\| > 1 \), then \(\varrho > \|x\| \).

(iii) If \(M \in \delta_2 \), then \(\|x\| = 1 \implies \varrho_M(x) = 1 \).

Proof. The proof is trivial.