LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Certain oxides, inorganic ion exchangers and ion exchange resins used as adsorbents.</td>
<td>11</td>
</tr>
<tr>
<td>1.2 Redox ion exchangers and their redox capacity.</td>
<td>18</td>
</tr>
<tr>
<td>2.1 Effect of equilibrium time on the sorption of Nickel (II) and Cadmium (II) by Duolite ES467.</td>
<td>44</td>
</tr>
<tr>
<td>2.2 Effect of equilibrium time on the sorption of Cobalt (II) and Iron (II) by Duolite ES467.</td>
<td>45</td>
</tr>
<tr>
<td>2.3 Sorption of Nickel (II) on Duolite ES467 (0.2 gm) at 20°C.</td>
<td>48</td>
</tr>
<tr>
<td>2.4 Sorption of Cadmium (II) on Duolite ES467 (0.2 gm) at 20°C.</td>
<td>49</td>
</tr>
<tr>
<td>2.5 Sorption of Cobalt (II) on Duolite ES467 (0.2 gm) at 20°C.</td>
<td>50</td>
</tr>
<tr>
<td>2.6 Sorption of Iron (III) on Duolite ES467 (0.2 gm) at 20°C.</td>
<td>51</td>
</tr>
<tr>
<td>2.7 Sorption of Nickel (II) on Duolite ES467 (0.2 gm) at 30°C.</td>
<td>52</td>
</tr>
<tr>
<td>2.8 Sorption of Cadmium (II) on Duolite ES467 (0.2 gm) at 30°C.</td>
<td>53</td>
</tr>
<tr>
<td>2.9 Sorption of Cobalt (II) on Duolite ES467 (0.2 gm) at 30°C.</td>
<td>54</td>
</tr>
<tr>
<td>2.10 Sorption of Iron (III) on Duolite ES467 (0.2 gm) at 30°C.</td>
<td>55</td>
</tr>
<tr>
<td>2.11 Sorption of Nickel (II) on Duolite ES467 (0.2 gm) at 40°C.</td>
<td>56</td>
</tr>
<tr>
<td>2.12 Sorption of Cadmium (II) on Duolite ES467 (0.2 gm) at 40°C.</td>
<td>57</td>
</tr>
<tr>
<td>Tables</td>
<td>Page No.</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>2.13</td>
<td>Sorption of Cobalt (II) on Duolite ES467 (0.2 gm) at 40°C.</td>
</tr>
<tr>
<td>2.14</td>
<td>Sorption of Iron (III) on Duolite ES467 (0.2 gm) at 40°C.</td>
</tr>
<tr>
<td>2.15</td>
<td>Sorption of Nickel (II) on Duolite ES467 (0.2 gm) at 50°C.</td>
</tr>
<tr>
<td>2.16</td>
<td>Sorption of Cadmium (II) on Duolite ES467 (0.2 gm) at 50°C.</td>
</tr>
<tr>
<td>2.17</td>
<td>Sorption of Cobalt (II) on Duolite ES467 (0.2 gm) at 50°C.</td>
</tr>
<tr>
<td>2.18</td>
<td>Sorption of Iron (III) on Duolite ES467 (0.2 gm) at 50°C.</td>
</tr>
<tr>
<td>2.19</td>
<td>Values of Cs and In Cs/Ce for Nickel (II) on Duolite ES467 at 20°C.</td>
</tr>
<tr>
<td>2.20</td>
<td>Values of Cs and In Cs/Ce for Cadmium (II) on Duolite ES467 at 20°C.</td>
</tr>
<tr>
<td>2.21</td>
<td>Values of Cs and In Cs/Ce for Cobalt (II) on Duolite ES467 at 20°C.</td>
</tr>
<tr>
<td>2.22</td>
<td>Values of Cs and In Cs/Ce for Iron (III) on Duolite ES467 at 20°C.</td>
</tr>
<tr>
<td>2.23</td>
<td>Values of Cs and In Cs/Ce for Nickel (II) on Duolite ES467 at 30°C.</td>
</tr>
<tr>
<td>2.24</td>
<td>Values of Cs and In Cs/Ce for Cadmium (II) on Duolite ES467 at 30°C.</td>
</tr>
<tr>
<td>2.25</td>
<td>Values of Cs and In Cs/Ce for Cobalt (II) on Duolite ES467 at 30°C.</td>
</tr>
<tr>
<td>2.26</td>
<td>Values of Cs and In Cs/Ce for Iron (III) on Duolite ES467 at 30°C.</td>
</tr>
<tr>
<td>2.27</td>
<td>Values of Cs and In Cs/Ce for Nickel (II) on Duolite ES467 at 40°C.</td>
</tr>
<tr>
<td>Tables</td>
<td>Page No.</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>2.28</td>
<td>Values of Cs and ln Cs/Ce for Cadmium (II) on Duolite ES467 at 40°C.</td>
</tr>
<tr>
<td>2.29</td>
<td>Values of Cs and ln Cs/Ce for Cobalt (II) on Duolite ES467 at 40°C.</td>
</tr>
<tr>
<td>2.30</td>
<td>Values of Cs and ln Cs/Ce for Iron (III) on Duolite ES467 at 40°C.</td>
</tr>
<tr>
<td>2.31</td>
<td>Values of Cs and ln Cs/Ce for Nickel (II) on Duolite ES467 at 50°C.</td>
</tr>
<tr>
<td>2.32</td>
<td>Values of Cs and ln Cs/Ce for Cadmium (II) on Duolite ES467 at 50°C.</td>
</tr>
<tr>
<td>2.33</td>
<td>Values of Cs and ln Cs/Ce for Cobalt (II) on Duolite ES467 at 50°C.</td>
</tr>
<tr>
<td>2.34</td>
<td>Values of Cs and ln Cs/Ce for Iron (III) on Duolite ES467 at 50°C.</td>
</tr>
<tr>
<td>2.35</td>
<td>Langmuir constants K and b at 20°C, 30°C, 40°C and 50°C.</td>
</tr>
<tr>
<td>2.36</td>
<td>Various thermodynamic parameters for the sorption of metal ions on Duolite ES467.</td>
</tr>
<tr>
<td>3.1</td>
<td>Dissolution of Hydrazine sulphate.</td>
</tr>
<tr>
<td>3.2</td>
<td>Reduction of Fe(III) to Fe(II).</td>
</tr>
<tr>
<td>3.3</td>
<td>Reduction of V(V) to V(IV).</td>
</tr>
<tr>
<td>3.4</td>
<td>Reduction of Mo(VI) to Mo(V).</td>
</tr>
<tr>
<td>3.5</td>
<td>Reduction of Sb(V) to Sb(III).</td>
</tr>
<tr>
<td>3.6</td>
<td>Reduction of Cr(VI) to Cr(III).</td>
</tr>
<tr>
<td>3.7</td>
<td>Reduction of Ce(IV) to Ce(III).</td>
</tr>
<tr>
<td>3.8</td>
<td>Reduction of As(V) to As(III).</td>
</tr>
<tr>
<td>3.9</td>
<td>Maximum redox capacity for some reducible substances.</td>
</tr>
<tr>
<td>3.10</td>
<td>Rate of reduction of Vanadium (V) to Vanadium (IV).</td>
</tr>
<tr>
<td>Tables</td>
<td>Page No.</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>3.11 Standard redox potential of some redox couples.</td>
<td>116</td>
</tr>
<tr>
<td>4.1 Oxidation of Tin (II) to Tin (IV).</td>
<td>122</td>
</tr>
<tr>
<td>4.2 Oxidation of Iron (II) to Iron (III).</td>
<td>122</td>
</tr>
<tr>
<td>4.3 Oxidation of Hydrazine to Ammonia.</td>
<td>123</td>
</tr>
<tr>
<td>4.4 Oxidation of Thioglycolic acid to Dithioglycolic acid.</td>
<td>123</td>
</tr>
<tr>
<td>4.5 Oxidation of Hydroquinone to Quinone.</td>
<td>124</td>
</tr>
<tr>
<td>4.6 Oxidation of Ascorbic acid to Deascorbic acid.</td>
<td>124</td>
</tr>
<tr>
<td>4.7 Rate of Oxidation of Sn(II) to Sn(IV).</td>
<td>125</td>
</tr>
<tr>
<td>4.8 Standard potentials of some redox couples.</td>
<td>128</td>
</tr>
<tr>
<td>5.1 R_f values of organophosphate pesticides with the composition of the mobile phases studied on hydrated stannic oxide plates.</td>
<td>134</td>
</tr>
<tr>
<td>5.2 R_f values of organophosphate pesticides on silica gel G plates.</td>
<td>137</td>
</tr>
<tr>
<td>5.3 Separations achieved using different solvent systems on hydrated stannic oxide gel as coating material on TLC plates.</td>
<td>139</td>
</tr>
</tbody>
</table>