Chapter 1

General Introduction – I

1.1 High Temperature Coatings
 1.1.1 Introduction
 1.1.2 Choice and requirements of the coating
 1.1.3 Classification of coatings
 1.1.3.a Aluminide coatings
 1.1.3.b The modified aluminide coatings
 1.1.3.b.1 Chromium modified aluminide coatings
 1.1.3.b.2 Platinum modified aluminide coatings
 1.1.3.b.3 Palladium modified coatings
 1.1.3.b.4 Yttrium and other rare-earth modified aluminide coatings
 1.1.3.b.5 Silicon, Boron, Niobium and Titanium modified aluminide coatings
 1.1.3.c Carbide coatings
 1.1.3.d Boride coatings
 1.1.3.e Silicide coatings
 1.1.3.f Nitride coatings
 1.1.3.g Silicate coatings
 1.1.3.h Phosphate coatings
 1.1.3.i Borate coatings
 1.1.4 Coating methods
 1.1.4.1 Pack cementation
 1.1.4.2 Gas-phase chemical vapour deposition (CVD)
 1.1.4.3 Slurry coatings
 1.1.4.4 Hot dipping
 1.1.4.5 Flame and plasma spraying
 1.1.4.6 Electroplating plus pack cementation
 1.1.4.7 Fused salt electrolysis
 1.1.4.8 Electron beam evaporation
 1.1.4.9 Electrophoresis
 1.1.4.10 Ion implantation or soft vacuum vapour deposition
 1.1.4.11 PVD thermal barrier coatings
 1.1.4.12 Laser alloyed coatings
 1.1.5 The coating degradation mechanism
 1.1.6 Oxidation of iron and iron-base alloys
 1.1.6.1 Oxidation of iron
 1.1.6.2 Cracking of oxide scale on iron
 1.1.6.3 Oxidation of iron-base alloys
 References
General Introduction – II

1.2 Hot Corrosion of Metals and Alloys
 1.2.1 Introduction
 1.2.2 Mechanism of hot corrosion
 1.2.2.1 Sulfidation model
 1.2.2.2 Salt fluxing reactions
 1.2.2.2.1 Basic fluxing model
 1.2.2.2.2 Acidic fluxing model
 1.2.2.2.2.a Alloy-induced acidic fluxing
 1.2.2.2.2.b Gas-induced acidic fluxing
 1.2.3 Thermodynamics of the hot corrosion
 1.2.3.1 Combustion / condensation
 1.2.3.2 Metal-sulfur-oxygen phase stability diagrams
 1.2.3.3 Salt chemistry
 1.2.3.4 Oxide solubility
 References

CHAPTER 2

High Temperature Oxidation Behaviour of CeO₂ and La₂O₃ Modified Aluminide Coatings on Mild Steel

2.1 Introduction
2.2 Experimental
 2.2.1 Alloy used
 2.2.2 Chemicals used
 2.2.3 Specimen preparation
 2.2.4 Apparatus used for kinetic studies
 2.2.5 Coating preparation
 2.2.5.1 Aluminide coating
 2.2.5.2 CeO₂ and La₂O₃ modified aluminide coatings
 2.2.6 Oxidation kinetics
 2.2.7 Metallographic studies
 2.2.8 Scanning electron microscopic (SEM) studies
 2.2.9 X-ray diffraction (XRD) studies
2.3 Results
 2.3.1 Oxidation kinetics
 2.3.2 Morphological studies
 2.3.2.1 Surface morphology
 2.3.2.2 Scale morphology
2.4 Discussion
References
CHAPTER 3

Hot Corrosion Behaviour of CeO₂ and La₂O₃ Modified Aluminide Coatings on Mild Steel

3.1 Introduction 70
3.2 Experimental 72
 3.2.1 Alloy used 72
 3.2.2 Chemicals used 72
 3.2.3 Specimen preparation 72
 3.2.4 Apparatus used for kinetic studies 73
 3.2.5 Coating preparation
 3.2.5.1 Aluminide coating 73
 3.2.5.2 CeO₂ and La₂O₃ modified aluminide coatings 73
 3.2.5.3 Sodium sulfate coating 73
 3.2.6 Hot corrosion studies 74
 3.2.7 Oxidation kinetics 74
 3.2.8 Metallographic studies 74
 3.2.9 Scanning electron microscopic (SEM) studies 75
 3.2.10 X-ray diffraction (XRD) studies 75
3.3 Results 75
 3.3.1 Hot corrosion studies
 3.3.1.a Influence of salt 75
 3.3.1.b Reaction kinetics 76
 3.3.1.c Morphological studies 76
3.4 Discussion 77
References 81

CHAPTER 4

Studies on High Temperature Corrosion Reactions Involving Metal Oxides and Sodium Sulfate

4.1 Introduction 82
4.2 Experimental 84
 4.2.1 Chemicals used 84
 4.2.2 Preparation of the specimens 84
 4.2.3 Oxidation studies 85
 4.2.4 X-ray diffraction studies 85
 4.2.5 Metallographic studies 85
 4.2.6 Scanning electron microscopic (SEM) studies 86
 4.2.7 pH and conductivity measurements 86
 4.2.8 Estimation of the soluble metals 86
4.3 Results
4.3.1 Thermogravimetric studies
4.3.1.a Reaction kinetics
4.3.1.b Influence of salt
4.3.2 Variation in pH
4.3.3 Variation in conductance
4.3.4 X-ray diffraction analysis
4.3.5 Metallographic and SEM studies
4.3.6 Estimation of soluble metal species

4.4 Discussion
References

CHAPTER 5

Studies on High Temperature Corrosion Reactions Involving Metal Oxides and Sodium Chloride

5.1 Introduction
5.2 Experimental
5.2.1 Chemicals used
5.2.2 Preparation of specimens
5.2.3 Oxidation studies
5.2.4 Metallographic studies
5.2.5 Scanning electron microscopic (SEM) studies
5.2.6 X-ray diffraction analysis
5.2.7 Estimation of soluble metal species
5.2.8 pH measurements
5.3 Results
5.3.1 Thermogravimetric studies
5.3.1.a Reaction kinetics
5.3.1.b Influence of salt
5.3.2 Metallographic, SEM and XRD studies
5.3.3 Variation in pH
5.3.4 Estimation of soluble metal species
5.4 Discussion
References

CHAPTER 6

Conclusions and Future Plan of Work

6.1 Conclusions
6.1.1 Chapter 2
6.1.2 Chapter 3
6.1.3 Chapter 4
6.1.4 Chapter 5
6.2 Future Plan of Work