TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td></td>
<td>xxiii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION
1.1 RESEARCH BACKGROUND 1
1.2 GENDER CLASSIFICATION USING FINGERPRINT 3
1.3 GENDER CLASSIFICATION USING EARPRINT 5
1.4 AGE ESTIMATION USING FINGERPRINT 6
1.5 CHALLENGES IN FINGERPRINT AND EAR ANALYSIS 6
1.5.1 Challenges in Fingerprint Analysis 6
1.5.2 Challenges in Earprint Analysis 8
1.6 STATE-OF-THE-ART IN GENDER CLASSIFICATION 8
1.7 RESEARCH OBJECTIVES 10
1.8 OUTLINE OF THE THESIS 10

2 REVIEW OF LITERATURE
2.1 WORKS ON GENDER CLASSIFICATION USING FINGERPRINT 12
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>WORKS ON GENDER CLASSIFICATION USING EAR</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>WORKS ON AGE ESTIMATION USING FINGERPRINT</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>FINGERPRINT FEATURE EXTRACTION</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>FEATURE EXTRACTION METHODS</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>FINGERPRINT DATA ACQUISITION</td>
<td>21</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Database</td>
<td>22</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Finger Numbering</td>
<td>22</td>
</tr>
<tr>
<td>3.3</td>
<td>FREQUENCY DOMAIN FEATURES</td>
<td>23</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Fingerprint Region Cropping</td>
<td>24</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Fast Fourier Transform (FFT) Coefficients</td>
<td>24</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Discrete Cosine Transform (DCT) Coefficients</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Power Spectral Density (PSD) Coefficients</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>FINGERPRINT FEATURE EXTRACTION THROUGH DWT AND SVD</td>
<td>35</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Feature Vector of Discrete Wavelet Transform (DWT)</td>
<td>36</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Feature Vector of Singular Value Decomposition (SVD)</td>
<td>37</td>
</tr>
<tr>
<td>3.4.3</td>
<td>DWT Level 6 and SVD Feature Vector</td>
<td>38</td>
</tr>
<tr>
<td>3.5</td>
<td>SPATIAL FEATURES OF FINGERPRINT</td>
<td>39</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Pre-processing</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Enhancement and binarization</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Thinning</td>
<td>44</td>
</tr>
</tbody>
</table>
CHAPTER NO. | TITLE | PAGE NO.
---|---|---
3.5.2 | Minutiae Extraction | 45
3.5.3 | Fingerprint Image Rotation | 49
3.5.4 | Singular Points | 57
3.5.5 | Ridge Parameters | 64
3.6 | SUMMARY | 73

4 | EAR FEATURE EXTRACTION | 75
4.1 | BACKGROUND | 75
4.2 | EARPINT DATA ACQUISITION | 76
4.3 | PRE-PROCESSING OF EARPINT | 76
 4.3.1 | Segmentation and Threshold | 77
 4.3.2 | Filtering | 78
 4.3.3 | Cropping | 79
4.4 | STANDARD FEATURE EXTRACTION | 80
 4.4.1 | Locating the Center of the Earhole | 81
 4.4.2 | Seven Features of Ear | 82
 4.4.3 | Euclidean Distance Measures | 83
4.5 | SUMMARY | 85

5 | GENDER CLASSIFICATION USING | 86
 FINGERPRINT |
5.1 | OVERVIEW | 86
5.2 | GENDER CLASSIFICATION USING FFT, DCT AND PSD FEATURES | 86
 5.2.1 | Analysis of Fundamental Coefficients | 87
 5.2.1.1 | Finger wise and age group wise FFT coefficients | 87
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1.2</td>
<td>Finger wise and age group wise DCT coefficients</td>
<td>90</td>
</tr>
<tr>
<td>5.2.1.3</td>
<td>Finger wise and age group wise PSD coefficients</td>
<td>92</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Threshold Setting</td>
<td>94</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Experimental Results by FFT, DCT and PSD</td>
<td>96</td>
</tr>
<tr>
<td>5.2.3.1</td>
<td>Dataset used for FFT, DCT and PSD Method</td>
<td>96</td>
</tr>
<tr>
<td>5.2.3.2</td>
<td>Age group wise gender classification</td>
<td>98</td>
</tr>
<tr>
<td>5.2.3.3</td>
<td>Finger wise gender classification</td>
<td>100</td>
</tr>
<tr>
<td>5.2.3.4</td>
<td>Overall gender classification</td>
<td>101</td>
</tr>
<tr>
<td>5.3</td>
<td>GENDER CLASSIFICATION USING DWT AND SVD FEATURES</td>
<td>102</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Algorithm and Classifier</td>
<td>103</td>
</tr>
<tr>
<td>5.3.1.1</td>
<td>Learning Stage</td>
<td>103</td>
</tr>
<tr>
<td>5.3.1.2</td>
<td>KNN Classifier</td>
<td>104</td>
</tr>
<tr>
<td>5.3.1.3</td>
<td>Classification Stage</td>
<td>105</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Experimental Results by DWT and SVD</td>
<td>105</td>
</tr>
<tr>
<td>5.3.2.1</td>
<td>Gender classification using DWT only</td>
<td>106</td>
</tr>
<tr>
<td>5.3.2.2</td>
<td>Gender classification using SVD only</td>
<td>108</td>
</tr>
<tr>
<td>5.3.2.3</td>
<td>Gender classification using DWT and SVD features</td>
<td>110</td>
</tr>
<tr>
<td>5.4</td>
<td>GENDER CLASSIFICATION USING RIDGE PARAMETERS</td>
<td>116</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Why Optimal Score Assignment?</td>
<td>117</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Ridge Count</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>5.4.2.1 Algorithm for assigning RC score</td>
<td>123</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Ridge Width</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>5.4.3.1 Algorithm for assigning RW score</td>
<td>134</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Fingertip Size of the Fingerprint</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>5.4.4.1 Algorithm for assigning FS score</td>
<td>145</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Experimental Results by Optimal Score Assignment Method</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>5.4.5.1 Age group wise gender classification</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>5.4.5.2 Finger wise gender classification</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>5.4.5.3 Overall gender classification</td>
<td>157</td>
</tr>
<tr>
<td>5.5</td>
<td>PERFORMANCE EVALUATION</td>
<td>157</td>
</tr>
<tr>
<td>5.6</td>
<td>SUMMARY</td>
<td>162</td>
</tr>
</tbody>
</table>

6 GENDER CLASSIFICATION USING EARPRINT 164

6.1 OVERVIEW 164

6.2 EARPRINT DATASET USED FOR GENDER CLASSIFICATION 166

6.3 CLASSIFIERS 167

6.3.1 Neural Network (NN) Classifier 168

6.3.2 Naives Bayes Classifier 168

6.3.3 K-Nearest Neighbour (KNN) Classifier 169

6.4 EXPERIMENTAL RESULTS 170

6.4.1 Gender Classification by NN Classifier 170

6.4.2 Gender Classification by Naives Bayes Classifier 171
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.3</td>
<td>Gender Classification by KNN Classifier</td>
<td>173</td>
</tr>
<tr>
<td>6.5</td>
<td>PERFORMANCE EVALUATION OF NN, NAIVES BAYES AND KNN CLASSIFIERS</td>
<td>174</td>
</tr>
<tr>
<td>6.6</td>
<td>SUMMARY</td>
<td>176</td>
</tr>
<tr>
<td>7</td>
<td>AGE ESTIMATION USING FINGERPRINT</td>
<td>177</td>
</tr>
<tr>
<td>7.1</td>
<td>INTRODUCTION</td>
<td>177</td>
</tr>
<tr>
<td>7.2</td>
<td>ALGORITHM AND CLASSIFIER</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>7.2.1 Learning Algorithm</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>7.2.2 Classification Algorithm</td>
<td>179</td>
</tr>
<tr>
<td>7.3</td>
<td>EXPERIMENTAL RESULTS</td>
<td>180</td>
</tr>
<tr>
<td>7.4</td>
<td>SUMMARY</td>
<td>184</td>
</tr>
<tr>
<td>8</td>
<td>CONCLUSION</td>
<td>186</td>
</tr>
<tr>
<td>8.1</td>
<td>SUMMARY</td>
<td>186</td>
</tr>
<tr>
<td>8.2</td>
<td>RESEARCH CONTRIBUTIONS</td>
<td>186</td>
</tr>
<tr>
<td>8.3</td>
<td>FUTURE DIRECTIONS</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>APPENDIX 1</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>APPENDIX 2</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>APPENDIX 3</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>LIST OF PUBLICATIONS</td>
<td>220</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>1.1</td>
<td>Few publicly available fingerprint databases</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Researches related to the gender classification using fingerprint</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Internal database</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Average FFT fundamental coefficients of fingerprint</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Average DCT fundamental coefficients of fingerprint</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>Average PSD fundamental coefficients of fingerprint</td>
<td>34</td>
</tr>
<tr>
<td>3.5</td>
<td>Typical feature vector of DWT level 6 and SVD</td>
<td>39</td>
</tr>
<tr>
<td>3.6</td>
<td>FVC samples and their angle of rotation</td>
<td>54</td>
</tr>
<tr>
<td>3.7</td>
<td>Comparison of minutiae between input and rotated image</td>
<td>55</td>
</tr>
<tr>
<td>3.8</td>
<td>Fingerprint patterns and Singular points</td>
<td>63</td>
</tr>
<tr>
<td>3.9</td>
<td>Spatial parameter values of selected fingerprints</td>
<td>68</td>
</tr>
<tr>
<td>3.10</td>
<td>Average ridge count of selected fingerprints</td>
<td>70</td>
</tr>
<tr>
<td>3.11</td>
<td>Average ridge width of selected fingerprints</td>
<td>72</td>
</tr>
<tr>
<td>3.12</td>
<td>Fingertip size of the selected fingerprints</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Euclidean distance from ear hole to seven standard features of selected earprints</td>
<td>84</td>
</tr>
<tr>
<td>5.1</td>
<td>Finger wise average FFT coefficients for different age groups</td>
<td>88</td>
</tr>
<tr>
<td>5.2</td>
<td>Finger wise average DCT coefficients for different age groups</td>
<td>90</td>
</tr>
<tr>
<td>5.3</td>
<td>Finger wise average PSD coefficients for different age groups</td>
<td>92</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.4</td>
<td>Age group wise threshold setting based on FC</td>
<td>94</td>
</tr>
<tr>
<td>5.5</td>
<td>Finger wise threshold setting based on FC</td>
<td>95</td>
</tr>
<tr>
<td>5.6</td>
<td>General threshold of all age groups and finger</td>
<td>95</td>
</tr>
<tr>
<td>5.7</td>
<td>Dataset</td>
<td>97</td>
</tr>
<tr>
<td>5.8</td>
<td>Age group wise success rate (in %) for male samples</td>
<td>98</td>
</tr>
<tr>
<td>5.9</td>
<td>Age group wise success rate (in %) for female samples</td>
<td>99</td>
</tr>
<tr>
<td>5.10</td>
<td>Age group wise overall success rate (in %)</td>
<td>99</td>
</tr>
<tr>
<td>5.11</td>
<td>Finger wise success rate (in %) for male samples</td>
<td>100</td>
</tr>
<tr>
<td>5.12</td>
<td>Finger wise success rate (in %) for female samples</td>
<td>101</td>
</tr>
<tr>
<td>5.13</td>
<td>Finger wise overall success rate (in %)</td>
<td>101</td>
</tr>
<tr>
<td>5.14</td>
<td>Confusion matrix for overall gender classification by FFT, DCT and PSD method</td>
<td>102</td>
</tr>
<tr>
<td>5.15</td>
<td>Gender classification success rate (in %) for different levels of DWT</td>
<td>106</td>
</tr>
<tr>
<td>5.16</td>
<td>Confusion matrix for overall gender classification by SVD</td>
<td>109</td>
</tr>
<tr>
<td>5.17</td>
<td>Age group wise success rate (in %) for male samples using DWT and SVD</td>
<td>110</td>
</tr>
<tr>
<td>5.18</td>
<td>Age group wise success rate (in %) for female samples using DWT and SVD</td>
<td>111</td>
</tr>
<tr>
<td>5.19</td>
<td>Age group wise overall success rate (in %) by DWT and SVD</td>
<td>112</td>
</tr>
<tr>
<td>5.20</td>
<td>Finger wise classification rate (in %) for male samples by DWT and SVD</td>
<td>113</td>
</tr>
<tr>
<td>5.21</td>
<td>Finger wise classification rate (in %) for female samples by DWT and SVD</td>
<td>113</td>
</tr>
<tr>
<td>5.22</td>
<td>Finger wise overall classification rate (in %) by DWT and SVD</td>
<td>114</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.23</td>
<td>Confusion matrix for overall gender classification using DWT and SVD</td>
<td>115</td>
</tr>
<tr>
<td>5.24</td>
<td>Average RC of all age groups</td>
<td>121</td>
</tr>
<tr>
<td>5.25</td>
<td>Details of finger wise ridge count</td>
<td>122</td>
</tr>
<tr>
<td>5.26</td>
<td>Finger wise maximum occurrence of RC for female samples</td>
<td>125</td>
</tr>
<tr>
<td>5.27</td>
<td>Finger wise maximum occurrence of RC for male samples</td>
<td>126</td>
</tr>
<tr>
<td>5.28</td>
<td>Age group wise maximum occurrence of RC</td>
<td>127</td>
</tr>
<tr>
<td>5.29</td>
<td>RC score assigned for female and male fingers</td>
<td>128</td>
</tr>
<tr>
<td>5.30</td>
<td>Average ridge width of all age groups</td>
<td>132</td>
</tr>
<tr>
<td>5.31</td>
<td>Details of finger wise ridge width</td>
<td>133</td>
</tr>
<tr>
<td>5.32</td>
<td>Finger wise maximum occurrence of RW for female samples</td>
<td>136</td>
</tr>
<tr>
<td>5.33</td>
<td>Finger wise maximum occurrence of RW for male samples</td>
<td>137</td>
</tr>
<tr>
<td>5.34</td>
<td>Age group wise maximum occurrence of RW</td>
<td>138</td>
</tr>
<tr>
<td>5.35</td>
<td>RW score assigned for female and male fingers</td>
<td>139</td>
</tr>
<tr>
<td>5.36</td>
<td>Average FS of all age groups</td>
<td>143</td>
</tr>
<tr>
<td>5.37</td>
<td>Details of finger wise fingertip size</td>
<td>144</td>
</tr>
<tr>
<td>5.38</td>
<td>Finger wise maximum occurrence of FS for female samples</td>
<td>147</td>
</tr>
<tr>
<td>5.39</td>
<td>Finger wise maximum occurrence of FS for male samples</td>
<td>148</td>
</tr>
<tr>
<td>5.40</td>
<td>Age group wise maximum occurrence of FS</td>
<td>149</td>
</tr>
<tr>
<td>5.41</td>
<td>FS score assigned for female and male fingers</td>
<td>150</td>
</tr>
<tr>
<td>5.42</td>
<td>Age group wise success rate (in %) for male samples by OSA method</td>
<td>153</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.43</td>
<td>Age group wise success rate (in %) for female samples by OSA method</td>
<td>154</td>
</tr>
<tr>
<td>5.44</td>
<td>Age group wise overall success rate (in %) by OSA method</td>
<td>155</td>
</tr>
<tr>
<td>5.45</td>
<td>Finger wise success rate (in %) for male samples by OSA method</td>
<td>155</td>
</tr>
<tr>
<td>5.46</td>
<td>Finger wise success rate (in %) for female samples by OSA method</td>
<td>156</td>
</tr>
<tr>
<td>5.47</td>
<td>Confusion matrix for overall gender classification by OSA method</td>
<td>157</td>
</tr>
<tr>
<td>5.48</td>
<td>Performance comparison (in %) of the proposed method with the other methods tested</td>
<td>157</td>
</tr>
<tr>
<td>5.49</td>
<td>Performance comparison with the existing methods (in %)</td>
<td>159</td>
</tr>
<tr>
<td>6.1</td>
<td>Dataset used for training and testing</td>
<td>167</td>
</tr>
<tr>
<td>6.2</td>
<td>Confusion matrix for NN classifier output of the left earprints</td>
<td>170</td>
</tr>
<tr>
<td>6.3</td>
<td>Confusion matrix for NN classifier output of the right earprints</td>
<td>170</td>
</tr>
<tr>
<td>6.4</td>
<td>Success rate (in %) of NN classifier</td>
<td>171</td>
</tr>
<tr>
<td>6.5</td>
<td>Confusion matrix for Bayes classifier output of the left earprints</td>
<td>171</td>
</tr>
<tr>
<td>6.6</td>
<td>Confusion matrix for Bayes classifier output of the right earprints</td>
<td>172</td>
</tr>
<tr>
<td>6.7</td>
<td>Success rate (in %) of Bayes classifier</td>
<td>172</td>
</tr>
<tr>
<td>6.8</td>
<td>Confusion matrix for KNN classifier output of the left earprints</td>
<td>173</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.9</td>
<td>Confusion matrix for KNN classifier output of the right earprints</td>
<td>173</td>
</tr>
<tr>
<td>6.10</td>
<td>Success rate (in %) of KNN classifier</td>
<td>173</td>
</tr>
<tr>
<td>6.11</td>
<td>Processing time of all the classifiers for gender classification</td>
<td>175</td>
</tr>
<tr>
<td>7.1</td>
<td>Age estimation success rate (in %) for the male fingerprints</td>
<td>181</td>
</tr>
<tr>
<td>7.2</td>
<td>Age estimation success rate (in %) for the female fingerprints</td>
<td>182</td>
</tr>
<tr>
<td>7.3</td>
<td>Accurate and misclassified results of right small fingers of all age groups of male fingerprints</td>
<td>183</td>
</tr>
<tr>
<td>7.4</td>
<td>Accurate and misclassified results of right small fingers of all age groups of female fingerprints</td>
<td>184</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>1.1</td>
<td>Widespread Information access applications requiring automatic gender classification and age estimation</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Fingerprint and its features</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Ear image with standard features and types of earprints</td>
<td>5</td>
</tr>
<tr>
<td>3.1</td>
<td>Finger numbering</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Fingerprint image and cropped image</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Frequency spectrum of FFT</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Comparison of FFT coefficients of male and female fingerprints</td>
<td>29</td>
</tr>
<tr>
<td>3.5</td>
<td>Step by step process for computing 2D DCT</td>
<td>31</td>
</tr>
<tr>
<td>3.6</td>
<td>Frequency spectrum of DCT</td>
<td>31</td>
</tr>
<tr>
<td>3.7</td>
<td>Comparison of DCT coefficients of male and female fingerprints</td>
<td>32</td>
</tr>
<tr>
<td>3.8</td>
<td>Frequency spectrum of PSD</td>
<td>34</td>
</tr>
<tr>
<td>3.9</td>
<td>Comparison of PSD coefficients of male and female fingerprints</td>
<td>35</td>
</tr>
<tr>
<td>3.10</td>
<td>DWT-based fingerprint feature extraction</td>
<td>37</td>
</tr>
<tr>
<td>3.11</td>
<td>SVD-based fingerprint feature extraction</td>
<td>38</td>
</tr>
<tr>
<td>3.12</td>
<td>Fingerprint pre-processing steps</td>
<td>41</td>
</tr>
<tr>
<td>3.13</td>
<td>Generation of thinned image from the binary image</td>
<td>45</td>
</tr>
<tr>
<td>3.14</td>
<td>Thinned fingerprint image and its connected components</td>
<td>47</td>
</tr>
<tr>
<td>3.15</td>
<td>Connected objects with the identified lake (a minutiae)</td>
<td>48</td>
</tr>
<tr>
<td>3.16</td>
<td>Input fingerprint image and its minutiae</td>
<td>49</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>3.17</td>
<td>Fingerprint image rotation process</td>
<td>53</td>
</tr>
<tr>
<td>3.18</td>
<td>Actual and vertically oriented fingerprint images</td>
<td>54</td>
</tr>
<tr>
<td>3.19</td>
<td>Minutiae of FVC2004_DB1_A_75_5 and its rotated image</td>
<td>56</td>
</tr>
<tr>
<td>3.20</td>
<td>Fingerprint types</td>
<td>57</td>
</tr>
<tr>
<td>3.21</td>
<td>Percentage distribution of most common fingerprint types</td>
<td>58</td>
</tr>
<tr>
<td>3.23</td>
<td>Delta point identification</td>
<td>60</td>
</tr>
<tr>
<td>3.25</td>
<td>Core and delta points located on different types of fingerprints</td>
<td>64</td>
</tr>
<tr>
<td>3.26</td>
<td>Fingerprint sample with manual selection of core and delta point</td>
<td>65</td>
</tr>
<tr>
<td>3.27</td>
<td>A fingerprint with imaginary lines to find ridge count</td>
<td>69</td>
</tr>
<tr>
<td>3.28</td>
<td>A fingerprint with imaginary lines to find ridge width</td>
<td>71</td>
</tr>
<tr>
<td>4.1</td>
<td>Ear image pre-processing steps</td>
<td>76</td>
</tr>
<tr>
<td>4.2</td>
<td>Masking filter used in ear feature extraction</td>
<td>79</td>
</tr>
<tr>
<td>4.3</td>
<td>The pinna (Source: (http://www.sonoworld.com)</td>
<td>80</td>
</tr>
<tr>
<td>4.4</td>
<td>Ear hole identification</td>
<td>81</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.5</td>
<td>Extraction of standard features of an ear image</td>
<td>82</td>
</tr>
<tr>
<td>4.6</td>
<td>Euclidean distance measure between ear hole center and features extracted</td>
<td>84</td>
</tr>
<tr>
<td>5.1</td>
<td>Gender classification method using FFT, DCT and PSD</td>
<td>87</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison of male and female fundamental coefficients of FFT</td>
<td>89</td>
</tr>
<tr>
<td>5.3</td>
<td>Age group wise comparisons of fundamental coefficients of FFT</td>
<td>89</td>
</tr>
<tr>
<td>5.4</td>
<td>Comparison of male and female fundamental coefficients of DCT</td>
<td>91</td>
</tr>
<tr>
<td>5.5</td>
<td>Age group wise comparison of fundamental coefficients of DCT</td>
<td>91</td>
</tr>
<tr>
<td>5.6</td>
<td>Comparison of male and female fundamental coefficients of PSD</td>
<td>93</td>
</tr>
<tr>
<td>5.7</td>
<td>Age group wise comparison of fundamental coefficients of PSD</td>
<td>93</td>
</tr>
<tr>
<td>5.8</td>
<td>Illustration of poor quality fingerprints</td>
<td>97</td>
</tr>
<tr>
<td>5.9</td>
<td>Learning stage of the proposed gender classification system</td>
<td>103</td>
</tr>
<tr>
<td>5.10</td>
<td>Success rate (in %) of male fingers for DWT level 5, 6 and 7</td>
<td>107</td>
</tr>
<tr>
<td>5.11</td>
<td>Success rate (in %) of female fingers for DWT level 5, 6 and 7</td>
<td>108</td>
</tr>
<tr>
<td>5.12</td>
<td>Success rate (in %) of gender classification using SVD only</td>
<td>109</td>
</tr>
<tr>
<td>5.13</td>
<td>Performance comparison of DWT level 6, SVD and combined DWT level 6 and SVD</td>
<td>115</td>
</tr>
<tr>
<td>5.14</td>
<td>Average ridge counts of female fingerprints in all age groups</td>
<td>119</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>5.15</td>
<td>Average ridge counts of male fingerprints in all age groups</td>
<td>120</td>
</tr>
<tr>
<td>5.16</td>
<td>Comparison of average ridge count in male and female fingerprints</td>
<td>123</td>
</tr>
<tr>
<td>5.17</td>
<td>Average ridge widths of female fingerprints in all age groups</td>
<td>129</td>
</tr>
<tr>
<td>5.18</td>
<td>Average ridge widths of male fingerprints in all age groups</td>
<td>130</td>
</tr>
<tr>
<td>5.19</td>
<td>Comparison of average ridge width of male and female fingerprints</td>
<td>134</td>
</tr>
<tr>
<td>5.20</td>
<td>Average fingertip sizes of female fingerprints in all age groups</td>
<td>141</td>
</tr>
<tr>
<td>5.21</td>
<td>Average fingertip sizes of male fingerprints in all age groups</td>
<td>142</td>
</tr>
<tr>
<td>5.22</td>
<td>Comparison of average fingertip size in male and female fingerprints</td>
<td>145</td>
</tr>
<tr>
<td>5.23</td>
<td>Comparison of overall classification rate of all the methods developed</td>
<td>158</td>
</tr>
<tr>
<td>5.24</td>
<td>Age group wise success rate comparison for male samples</td>
<td>160</td>
</tr>
<tr>
<td>5.25</td>
<td>Age group wise success rate comparison for female samples</td>
<td>161</td>
</tr>
<tr>
<td>5.26</td>
<td>Overall age group wise success rate comparison</td>
<td>161</td>
</tr>
<tr>
<td>6.1</td>
<td>Gender classification method using earprint</td>
<td>165</td>
</tr>
<tr>
<td>6.2</td>
<td>Examples of degraded earprints</td>
<td>167</td>
</tr>
<tr>
<td>6.3</td>
<td>Success rate (in %) comparison of left and right earprints</td>
<td>174</td>
</tr>
<tr>
<td>6.4</td>
<td>Comparison of success rate (in %) of all classifiers</td>
<td>175</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>7.1</td>
<td>DWT and SVD-based age estimation method</td>
<td>178</td>
</tr>
<tr>
<td>A1.1</td>
<td>Ridge count of male and female samples for age group 8-12</td>
<td>198</td>
</tr>
<tr>
<td>A1.2</td>
<td>Ridge count of male and female samples for age group 13-18</td>
<td>199</td>
</tr>
<tr>
<td>A1.3</td>
<td>Ridge count of male and female samples for age group 19-25</td>
<td>199</td>
</tr>
<tr>
<td>A1.4</td>
<td>Ridge count of male and female samples for age group >25</td>
<td>200</td>
</tr>
<tr>
<td>A2.1</td>
<td>Ridge width of male and female samples for age group 8-12</td>
<td>201</td>
</tr>
<tr>
<td>A2.2</td>
<td>Ridge width of male and female samples for age group 13-18</td>
<td>202</td>
</tr>
<tr>
<td>A2.3</td>
<td>Ridge width of male and female samples for age group 19-25</td>
<td>202</td>
</tr>
<tr>
<td>A2.4</td>
<td>Ridge width of male and female samples for age group >25</td>
<td>203</td>
</tr>
<tr>
<td>A3.1</td>
<td>Fingertip size of male and female samples for age group 8-12</td>
<td>204</td>
</tr>
<tr>
<td>A3.2</td>
<td>Fingertip size of male and female samples for age group 13-18</td>
<td>205</td>
</tr>
<tr>
<td>A3.3</td>
<td>Fingertip size of male and female samples for age group 19-25</td>
<td>205</td>
</tr>
<tr>
<td>A3.4</td>
<td>Fingertip size of male and female samples for age group >25</td>
<td>206</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFIS</td>
<td>Automatic Fingerprint Identification System</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DCT</td>
<td>Discrete Cosine Transform</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier Transform</td>
</tr>
<tr>
<td>DWT</td>
<td>Discrete Wavelet Transform</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>FS</td>
<td>Fingertip Size</td>
</tr>
<tr>
<td>FVC</td>
<td>Fingerprint Verification Competition</td>
</tr>
<tr>
<td>FC</td>
<td>Fundamental Coefficients</td>
</tr>
<tr>
<td>HH</td>
<td>High-High</td>
</tr>
<tr>
<td>HL</td>
<td>High-Low</td>
</tr>
<tr>
<td>KNN</td>
<td>K-Nearest Neighbour</td>
</tr>
<tr>
<td>LH</td>
<td>Low-High</td>
</tr>
<tr>
<td>LL</td>
<td>Low-Low</td>
</tr>
<tr>
<td>NN</td>
<td>Neural Network</td>
</tr>
<tr>
<td>OSA</td>
<td>Optimal Score Assignment</td>
</tr>
<tr>
<td>θ</td>
<td>Parametric angle made by ρ with respect to the x-axis</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PSD</td>
<td>Power Spectral Density</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Components Analysis</td>
</tr>
<tr>
<td>ρ</td>
<td>Radial distance of a point from the origin</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RC</td>
<td>Ridge Count</td>
</tr>
<tr>
<td>RTVTR</td>
<td>Ridge Thickness to Valley Thickness Ratio</td>
</tr>
<tr>
<td>RW</td>
<td>Ridge Width</td>
</tr>
<tr>
<td>SVD</td>
<td>Singular Value Decomposition</td>
</tr>
<tr>
<td>T</td>
<td>Threshold</td>
</tr>
</tbody>
</table>