LIST OF FIGURES

Figure 1: Atrazine mineralization pathway.
Figure 2: Structure of phenazine
Figure 3: PCR conditions of the targeted genes of the strain SBJ1357
Figure 4: Genetic map of the pDrive plasmid cloning vector and site of strain SBJ1357 genes cloned.
Figure 5: Growth kinetics of strain SBJ1357 in minimal salt medium.
Figure 6: Rate of disappearance of atrazine in soil microcosm with the strain SBJ1357, estimated by HPLC analysis.
Figure 7: HPLC chromatogram showing the disappearance of atrazine and metabolites in soil microcosm with strain SBJ1357 HPLC analysis. (0, 4, 8, 12, 16 and 20 days).
Figure 8: Shows the atrazine metabolites in soil microcosm augmented with strain SBJ1357. evaluated by GC-MS analysis (0, 4, and 20 days).
Figure 9: Colony characteristics of SBJ1357 on LB agar medium
Figure 10: Taxonomic characterization of the strain SBJ1357 using Biolog method.
Figure 11: Shows distinct bands of genomic DNA of SBJ1357
Figure 12: (A); Ribosomal operon organization of the SBJ1357 and targeted genes in this study; (B) Agarose gel electrophoresis of the amplified 16S rRNA gene from SBJ1357 genomic DNA
Figure 13: 16S rRNA gene nucleotide sequences of strain SBJ1357.
Figure 14: Phylogenetic relationship based on 16S rRNA gene nucleotide sequences of SBJ1357 and reference strains.
Figure 15: Illustrating the 16S rRNA gene based taxonomic report of the strain SBJ1357.
Figure 16: (A) and (B); Broad spectrum antimicrobial activity of strain SBJ1357 against phytopathogenic fungi, *Fusarium oxysporum* and human pathogen yeast, *Candida albicans*, respectively.
Figure 17: (A) and (B); Chrome Azurol S (CAS) assay shows the siderophore producing ability of the strains SBJ1357 and NJ101 as positive control, respectively.

Figure 18: HCN production by strain SBJ1357.

Figure 19: (A); hcn operon organization of the SBJ1357 and targeted genes in this study; (B) Agarose gel electrophoresis of the amplified hcnB&C genes from SBJ1357 genomic DNA.

Figure 20: Nucleotide and translated amino acid sequences of the hcnB and hcnC of the strain SBJ1357.

Figure 21: ClustalW alignment of HcnB protein amino acid sequence of strain SBJ1357 with reference Pseudomonas spp. strains.

Figure 22: Clustalw alignment of HcnC protein amino acid sequence of strain SBJ1357 with reference Pseudomonas spp. strains.

Figure 23: Phylogenetic relationship based on hcnB nucleotide sequences of SBJ1357 and reference strains.

Figure 24: Phylogenetic relationship based on hcnC nucleotide sequences of SBJ1357 and reference strains.

Figure 25: Phylogenetic relationship based on HcnB amino acid sequences of SBJ1357 and reference strains.

Figure 26: Phylogenetic relationship based on HcnC amino acid sequences of SBJ1357 and reference strains.

Figure 27: Secondary structure of the HcnB protein of strain SBJ1357.

Figure 28: Secondary structure of the HcnC protein of strain SBJ1357.

Figure 29: Alignment of amino acid sequences and secondary structure of the HcnC protein of strain SBJ1357.

Figure 30: Growth and PCA production by strain SBJ1357.

Figure 31: (A) and (B); Shows the Extraction and HPLC analysis of PCA produced by strain SBJ1357, respectively.

Figure 32: Influence of various carbon sources on the level of PCA production by strain SBJ1357.

Figure 33: Influence of different pH levels on PCA production by strain SBJ1357.
Figure 34: Influence of different temperature on PCA production by strain SBJ-1357.

Figure 35: (A), (B) and (C); UV-visible based spectra showing the temperature dependent production of the PCA by strain SBJ1357 at 37°C, 32 °C and 28°C, respectively.

Figure 36: Effect of temperature on the production of phenazine metabolites by strain SBJ1357

Figure 37: Influence of ZnSO₄ on PCA production by strain SBJ1357.

Figure 38: The cross feeding assay showing the production of AHLs. (A) and (B) Shows production of AHLs by strains SBJ1357 and NJ101, respectively.

Figure 39: (A); phz operon organization of the SBJ1357 and genes targeted in this study; (B) Agarose gel electrophoresis of the amplified phzC,D,E&S genes from SBJ1357 genomic DNA.

Figure 40: Nucleotide sequences of the phz operon genes of the strain SBJ1357 targeted in this study.

Figure 41: Nucleotide and translated amino acid sequences of the phzC gene of the strain SBJ1357.

Figure 42: Nucleotide and translated amino acid sequences of the phzD gene of the strain SBJ1357.

Figure 43: Nucleotide and translated amino acid sequences of the phzE gene of the strain SBJ1357.

Figure 44: Nucleotide and translated amino acid sequences of the phzS gene of the strain SBJ1357.

Figure 45: ClustalW alignment of PhzC protein amino acid sequence of strain SBJ1357 with reference strains of Pseudomonas spp. and other genera.

Figure 46: ClustalW alignment of PhzD protein amino acid sequence of strain SBJ1357 with reference strains of Pseudomonas spp. and other genera.

Figure 47: Phylogenetic relationship based on PhzC amino acid sequence of strain SBJ1357 and reference strains.

Figure 48: Phylogenetic relationship based on PhzD amino acid sequences of strain SBJ1357 and reference strains.
Figure 49: Secondary structure of the PhzC protein of strain SBJ1357.

Figure 50: Secondary structure of the PhzD protein of strain SBJ1357.

Figure 51: CARDT showing the presence of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase conserved domain in the strain SBJ 1357 $phzC$ gene encoding PhzC protein.

Figure 52: Presence of 3-deoxy-D-arabino-heptulosonate 7-Phosphate synthase conserved domain in the strain SBJ1357 $phzC$ gene encoding PhzC protein. Complete domains present in the 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase.

Figure 53: CARDT showing the presence of 2,3 dihydro2,3-dihydroxybenzoate synthase conserved domain in the strain SBJ 1357 $phzD$ gene encoding PhzD protein.

Figure 54: Presence of 2, 3-dihydro2,3-dihydroxybenzoate synthase conserved domain in the strain SBJ 1357 $phzD$ gene encoding PhzD protein.

Figure 55: Summary of the template X-ray crystallographic structure used for the comparative modeling PhzD protein encoded by $phzD$ gene of strain SBJ1357. (B); Alignment of the amino acid sequences of template and the PhzD protein encoded by $phzD$ gene of strain SBJ1357.

Figure 56: Ramachandran plot of the PhzD amino acid sequences of the SBJ1357 strain.

Figure 57: Comparative residues properties of the 3D PhzD protein model of SBJ 1357 strain.

Figure 58: (A); 3D model of the Isochorismatase hydrolase enzyme (PhzD protein) encoded by $phzD$ gene of strain SBJ1357 constructed using molecular modeling.

(B); 3D model of the Isochorismatase hydrolase enzyme of strain SBJ1357 display the functional sites.

Figure 59: Quantitative estimation of IAA of Strain SBJ1357.

Figure 60: (A) and (B); Qualitative assessment of phosphate solubilizing activity of strain SBJ1357 on Pikovskaya's and NBRI-P media, respectively.

Figure 61: Quantitative assessment of inorganic phosphate strain SBJ1357 are plotted as function of time.