TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>NEED FOR BIOMETRIC SYSTEM</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>APPLICATIONS OF BIOMETRIC SYSTEM</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>BIOMETRIC IMPLEMENTATION IN INDIA</td>
<td>2</td>
</tr>
<tr>
<td>1.5</td>
<td>TYPES OF BIOMETRIC SYSTEM</td>
<td>4</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Finger Print Biometric System</td>
<td>5</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Hand Geometry</td>
<td>6</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Palm Print Biometrics</td>
<td>6</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Facial Biometrics</td>
<td>7</td>
</tr>
<tr>
<td>1.5.5</td>
<td>Ear and Nose Biometrics</td>
<td>8</td>
</tr>
<tr>
<td>1.5.6</td>
<td>Vein Biometrics</td>
<td>9</td>
</tr>
<tr>
<td>1.5.7</td>
<td>Lip Biometrics</td>
<td>10</td>
</tr>
<tr>
<td>1.5.8</td>
<td>Thermo Gram Biometrics</td>
<td>11</td>
</tr>
<tr>
<td>1.5.9</td>
<td>Body Odour</td>
<td>11</td>
</tr>
<tr>
<td>1.5.10</td>
<td>Skin Reflection Biometrics</td>
<td>12</td>
</tr>
<tr>
<td>1.5.11</td>
<td>Gait Sensor</td>
<td>13</td>
</tr>
<tr>
<td>1.5.12</td>
<td>Signature Biometrics</td>
<td>14</td>
</tr>
<tr>
<td>1.5.13</td>
<td>Keystroke Biometrics</td>
<td>15</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>1.5.14</td>
<td>Audio / Voice Biometrics</td>
<td>16</td>
</tr>
<tr>
<td>1.5.15</td>
<td>DNA</td>
<td>16</td>
</tr>
<tr>
<td>1.5.16</td>
<td>Foot Print and Foot Dynamics</td>
<td>17</td>
</tr>
<tr>
<td>1.5.17</td>
<td>Vascular Pattern</td>
<td>17</td>
</tr>
<tr>
<td>1.5.18</td>
<td>Eye Biometrics</td>
<td>18</td>
</tr>
<tr>
<td>1.5.18.1</td>
<td>Retina biometrics</td>
<td>19</td>
</tr>
<tr>
<td>1.5.18.2</td>
<td>Iris biometrics</td>
<td>20</td>
</tr>
<tr>
<td>1.6</td>
<td>FEATURES OF IRIS BIOMETRICS</td>
<td>22</td>
</tr>
<tr>
<td>1.7</td>
<td>CHALLENGES OF IRIS BIOMETRICS</td>
<td>23</td>
</tr>
<tr>
<td>1.8</td>
<td>MOTIVATION</td>
<td>23</td>
</tr>
<tr>
<td>1.9</td>
<td>OBJECTIVE OF THE THESIS</td>
<td>23</td>
</tr>
<tr>
<td>1.10</td>
<td>ORGANIZATION OF THESIS</td>
<td>24</td>
</tr>
<tr>
<td>1.11</td>
<td>SUMMARY</td>
<td>25</td>
</tr>
</tbody>
</table>

2 LITERATURE SURVEY 26

<p>| 2.1 | GENERAL | 26 |
| 2.2 | BACKGROUND STUDY | 26 |
| 2.3 | REVIEWS ON IRIS BIOMETRICS AND DATA BASE | 28 |
| 2.4 | REVIEWS ON LOCALIZATION OF IRIS BOUNDARY | 30 |
| 2.5 | REVIEWS ON IRIS SEGMENTATION AND ENHANCEMENT | 35 |
| 2.6 | REVIEWS ON IRIS FEATURE EXTRACTION AND REDUCTION | 40 |
| 2.7 | REVIEWS ON NEURAL NETWORK AND HARDWARE IMPLEMENTATION | 52 |
| 2.8 | SUMMARY | 56 |</p>
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>THEORY AND SIMULATION OF IRIS LOCALIZATION</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>IRIS TEXTURE LAYERS</td>
<td>57</td>
</tr>
<tr>
<td>3.3</td>
<td>EYE IMAGE DATA BASE</td>
<td>58</td>
</tr>
<tr>
<td>3.4</td>
<td>IMAGE PROCESSING</td>
<td>59</td>
</tr>
<tr>
<td>3.5</td>
<td>IMAGE NORMALIZATION</td>
<td>59</td>
</tr>
<tr>
<td>3.6</td>
<td>IMAGE FILTERS</td>
<td>60</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Linear Filters</td>
<td>60</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Non-Linear filters</td>
<td>61</td>
</tr>
<tr>
<td>3.7</td>
<td>BINARIZATION</td>
<td>62</td>
</tr>
<tr>
<td>3.8</td>
<td>MORPHOLOGICAL OPERATION</td>
<td>63</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Binary open function</td>
<td>64</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Binary closing function</td>
<td>64</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Border clear function</td>
<td>64</td>
</tr>
<tr>
<td>3.8.4</td>
<td>Binary dilation</td>
<td>65</td>
</tr>
<tr>
<td>3.8.5</td>
<td>Binary Labelling</td>
<td>66</td>
</tr>
<tr>
<td>3.9</td>
<td>EDGE DETECTION</td>
<td>66</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Gradient operator</td>
<td>66</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Roberts edge detection</td>
<td>67</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Prewitt edge detection</td>
<td>68</td>
</tr>
<tr>
<td>3.9.4</td>
<td>Sobel Edge Detection</td>
<td>69</td>
</tr>
<tr>
<td>3.9.5</td>
<td>Laplacian of Gaussian (LOG)</td>
<td>70</td>
</tr>
<tr>
<td>3.9.6</td>
<td>Canny Edge Detector</td>
<td>70</td>
</tr>
<tr>
<td>3.10</td>
<td>MULTIPLE LEFT AND RIGHT POINT (MLRP) ALGORITHM</td>
<td>70</td>
</tr>
<tr>
<td>3.11</td>
<td>SIMULATION RESULTS</td>
<td>73</td>
</tr>
<tr>
<td>3.11.1</td>
<td>Simulation Environment</td>
<td>73</td>
</tr>
<tr>
<td>3.11.2</td>
<td>Resized Iris</td>
<td>73</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>3.11.3</td>
<td>Normalized Iris</td>
<td>74</td>
</tr>
<tr>
<td>3.11.4</td>
<td>Median Filter Output</td>
<td>75</td>
</tr>
<tr>
<td>3.11.5</td>
<td>Binary Converted Iris</td>
<td>77</td>
</tr>
<tr>
<td>3.11.6</td>
<td>Area Open Result</td>
<td>78</td>
</tr>
<tr>
<td>3.11.7</td>
<td>Binary Dilation And Area Close Outputs</td>
<td>78</td>
</tr>
<tr>
<td>3.11.8</td>
<td>Complement Operation Result</td>
<td>79</td>
</tr>
<tr>
<td>3.11.9</td>
<td>Border Clear Process Output</td>
<td>79</td>
</tr>
<tr>
<td>3.11.10</td>
<td>Pupil Labelling Output</td>
<td>80</td>
</tr>
<tr>
<td>3.11.11</td>
<td>Robert Edge Detection Result</td>
<td>80</td>
</tr>
<tr>
<td>3.11.12</td>
<td>Sobel Edge Detection Result</td>
<td>81</td>
</tr>
<tr>
<td>3.11.13</td>
<td>Prewitt Edge Detection Result</td>
<td>81</td>
</tr>
<tr>
<td>3.11.14</td>
<td>Results Of Canny Edge Detection</td>
<td>82</td>
</tr>
<tr>
<td>3.11.15</td>
<td>Iris Boundary Detection</td>
<td>84</td>
</tr>
<tr>
<td>3.11.16</td>
<td>Detected Iris And Pupil Boundary</td>
<td>85</td>
</tr>
<tr>
<td>3.12</td>
<td>SUMMARY</td>
<td>85</td>
</tr>
</tbody>
</table>

4 IRIS SEGMENTATION AND ENHANCEMENT 87

4.1 INTRODUCTION 87

4.2 IMAGE SEGMENTATION 87

4.2.1 Region Based Segmentation 88

4.2.2 Clustering Technique 88

4.2.2.1 K-Means clustering 89

4.2.2.2 Fuzzy based clustering 89

4.2.3 Thresholding Based Segmentation 89

4.2.4 Edge Detection Based Segmentation 89

4.3 IMAGE CROPPING 90

4.4 PROPOSED IRIS SEGMENTATION 90

4.5 IRIS COORDINATE SYSTEM 92
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.1</td>
<td>Polar to Rectangular Conversion System</td>
<td>93</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Proposed Coordinate System</td>
<td>94</td>
</tr>
<tr>
<td>4.6</td>
<td>HISTOGRAM EQUALIZATION</td>
<td>96</td>
</tr>
<tr>
<td>4.7</td>
<td>SIMULATION RESULTS</td>
<td>99</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Depth Of Eye Lashes And Eye Lids Detection</td>
<td>99</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Image Cropping Result</td>
<td>99</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Segmented Iris Region</td>
<td>100</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Rectangular Coordinated Iris</td>
<td>100</td>
</tr>
<tr>
<td>4.7.5</td>
<td>Histogram Equalized Iris</td>
<td>101</td>
</tr>
<tr>
<td>4.8</td>
<td>SUMMARY</td>
<td>103</td>
</tr>
<tr>
<td>5</td>
<td>IRIS WAVELET FEATURE EXTRACTION AND DIMENSION REDUCTION</td>
<td>104</td>
</tr>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>104</td>
</tr>
<tr>
<td>5.2</td>
<td>WAVELET TRANSFORM</td>
<td>104</td>
</tr>
<tr>
<td>5.2.1</td>
<td>CWT</td>
<td>105</td>
</tr>
<tr>
<td>5.2.2</td>
<td>DWT</td>
<td>105</td>
</tr>
<tr>
<td>5.2.3</td>
<td>MWT</td>
<td>106</td>
</tr>
<tr>
<td>5.2.3.1</td>
<td>Relationship between wavelet and scaling function</td>
<td>106</td>
</tr>
<tr>
<td>5.2.3.2</td>
<td>Relationship between the filters and wavelets</td>
<td>107</td>
</tr>
<tr>
<td>5.3</td>
<td>DWT SUB-BAND</td>
<td>107</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Structure of DWT</td>
<td>110</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Problems of DWT</td>
<td>111</td>
</tr>
<tr>
<td>5.4</td>
<td>COMPLEX DUAL TREE WAVELET TRANSFORM (CDTWT)</td>
<td>111</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>5.5</td>
<td>FEATURE DIMENSIONALITY REDUCTION</td>
<td>115</td>
</tr>
<tr>
<td>5.6</td>
<td>MPCA</td>
<td>116</td>
</tr>
<tr>
<td>5.6.1</td>
<td>2D analysis of iris</td>
<td>118</td>
</tr>
<tr>
<td>5.6.2</td>
<td>3D analysis of iris</td>
<td>118</td>
</tr>
<tr>
<td>5.7</td>
<td>SIMULATION RESULTS</td>
<td>121</td>
</tr>
<tr>
<td>5.7.1</td>
<td>2D-CDTWT Vertical LH-Band Signal</td>
<td>122</td>
</tr>
<tr>
<td>5.7.2</td>
<td>2D-CDTWT Horizontal HL-Band Signal</td>
<td>123</td>
</tr>
<tr>
<td>5.7.3</td>
<td>2D-CDTWT Diagonal HH-Band Signal</td>
<td>123</td>
</tr>
<tr>
<td>5.7.4</td>
<td>2D Results of MPCA</td>
<td>125</td>
</tr>
<tr>
<td>5.7.5</td>
<td>3D results of MPCA</td>
<td>126</td>
</tr>
<tr>
<td>5.8</td>
<td>SUMMARY</td>
<td>126</td>
</tr>
<tr>
<td>6</td>
<td>IRIS AUTHORIZATION</td>
<td>128</td>
</tr>
<tr>
<td>6.1</td>
<td>INTRODUCTION</td>
<td>128</td>
</tr>
<tr>
<td>6.2</td>
<td>TERMINOLOGIES OF ANN</td>
<td>129</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Weight</td>
<td>129</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Bias</td>
<td>130</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Activation functions</td>
<td>131</td>
</tr>
<tr>
<td>6.2.3.1</td>
<td>Identify function</td>
<td>131</td>
</tr>
<tr>
<td>6.2.3.2</td>
<td>Binary step function</td>
<td>132</td>
</tr>
<tr>
<td>6.2.3.3</td>
<td>Binary sigmoid function</td>
<td>133</td>
</tr>
<tr>
<td>6.2.3.4</td>
<td>Bipolar sigmoid function</td>
<td>133</td>
</tr>
<tr>
<td>6.2.3.5</td>
<td>Threshold function</td>
<td>134</td>
</tr>
<tr>
<td>6.3</td>
<td>ANN LEARNING METHODS</td>
<td>135</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Supervised learning</td>
<td>135</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Unsupervised learning</td>
<td>135</td>
</tr>
<tr>
<td>6.4</td>
<td>ANN LEARNING RULES</td>
<td>135</td>
</tr>
<tr>
<td>6.5</td>
<td>BASIC NETWORK ARCHITECTURE</td>
<td>136</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.6</td>
<td>FEED FORWARD BACK PROPAGATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEURAL NETWORK (FFBPNN)</td>
<td>137</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Feed Forward Stage</td>
<td>139</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Back Propagation Stage</td>
<td>140</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Weight and Bias Updation Stage</td>
<td>141</td>
</tr>
<tr>
<td>6.7</td>
<td>FFBPNN TRAINING METHODS</td>
<td></td>
</tr>
<tr>
<td>6.7.1</td>
<td>LM Algorithm</td>
<td>141</td>
</tr>
<tr>
<td>6.7.2</td>
<td>RP Algorithm</td>
<td>142</td>
</tr>
<tr>
<td>6.7.3</td>
<td>CGF Algorithm</td>
<td>142</td>
</tr>
<tr>
<td>6.7.4</td>
<td>SCG Algorithm</td>
<td>143</td>
</tr>
<tr>
<td>6.7.5</td>
<td>CGP Algorithm</td>
<td>143</td>
</tr>
<tr>
<td>6.7.6</td>
<td>BFGS Algorithm</td>
<td>143</td>
</tr>
<tr>
<td>6.7.7</td>
<td>OSS Algorithm</td>
<td>143</td>
</tr>
<tr>
<td>6.7.8</td>
<td>GDX Algorithm</td>
<td>144</td>
</tr>
<tr>
<td>6.8</td>
<td>HARDWARE DESCRIPTIVE LANGUAGE</td>
<td></td>
</tr>
<tr>
<td>6.9</td>
<td>VHDL</td>
<td></td>
</tr>
<tr>
<td>6.9.1</td>
<td>Structural Modelling</td>
<td>144</td>
</tr>
<tr>
<td>6.9.2</td>
<td>Data flow Modelling</td>
<td>145</td>
</tr>
<tr>
<td>6.9.3</td>
<td>Behavioural Modelling</td>
<td>145</td>
</tr>
<tr>
<td>6.9.4</td>
<td>Mixed Style of Modelling</td>
<td>145</td>
</tr>
<tr>
<td>6.10</td>
<td>HARDWARE IMPLEMENTATION</td>
<td></td>
</tr>
<tr>
<td>6.11</td>
<td>FIELD PROGRAMMABLE GATE ARRAY</td>
<td></td>
</tr>
<tr>
<td>6.11.1</td>
<td>CLB</td>
<td>146</td>
</tr>
<tr>
<td>6.11.2</td>
<td>Switch Matrix</td>
<td>147</td>
</tr>
<tr>
<td>6.11.3</td>
<td>I/O Ports</td>
<td>148</td>
</tr>
<tr>
<td>6.12</td>
<td>XILINX SPATRAN-3E</td>
<td></td>
</tr>
<tr>
<td>6.13</td>
<td>PROPOSED SPATRAN-3E FPGA BOARD</td>
<td>149</td>
</tr>
<tr>
<td>6.14</td>
<td>IMPLEMENTATION MODEL</td>
<td></td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.14.1</td>
<td>Test Iris Feature Data Base</td>
<td>151</td>
</tr>
<tr>
<td>6.14.2</td>
<td>Comparator and Trained Data Base</td>
<td>152</td>
</tr>
<tr>
<td>6.15</td>
<td>BIOMETRIC PERFORMANCE PARAMETERS</td>
<td>152</td>
</tr>
<tr>
<td>6.15.1</td>
<td>False Positive (FP)</td>
<td>152</td>
</tr>
<tr>
<td>6.15.2</td>
<td>False Negative (FN)</td>
<td>153</td>
</tr>
<tr>
<td>6.15.3</td>
<td>True Positive (TP)</td>
<td>153</td>
</tr>
<tr>
<td>6.15.4</td>
<td>True Negative (TN)</td>
<td>153</td>
</tr>
<tr>
<td>6.15.5</td>
<td>Accuracy</td>
<td>153</td>
</tr>
<tr>
<td>6.15.6</td>
<td>Sensitivity</td>
<td>154</td>
</tr>
<tr>
<td>6.15.7</td>
<td>Specificity</td>
<td>154</td>
</tr>
<tr>
<td>6.15.8</td>
<td>False Acceptance Rate (FAR)</td>
<td>154</td>
</tr>
<tr>
<td>6.15.9</td>
<td>False Rejection Ratio (FRR)</td>
<td>154</td>
</tr>
<tr>
<td>6.15.10</td>
<td>Positive Predictive Value (PPV)</td>
<td>155</td>
</tr>
<tr>
<td>6.15.11</td>
<td>Negative Predictive Value (NPV)</td>
<td>155</td>
</tr>
<tr>
<td>6.16</td>
<td>SIMULATION RESULTS</td>
<td>155</td>
</tr>
<tr>
<td>6.16.1</td>
<td>Results of BFGS</td>
<td>156</td>
</tr>
<tr>
<td>6.16.2</td>
<td>Results of CGF</td>
<td>157</td>
</tr>
<tr>
<td>6.16.3</td>
<td>Results of CGP</td>
<td>157</td>
</tr>
<tr>
<td>6.16.4</td>
<td>Results of SCG</td>
<td>158</td>
</tr>
<tr>
<td>6.16.5</td>
<td>Results of RP</td>
<td>159</td>
</tr>
<tr>
<td>6.16.6</td>
<td>Results of OSS</td>
<td>159</td>
</tr>
<tr>
<td>6.16.7</td>
<td>Results of GDX</td>
<td>160</td>
</tr>
<tr>
<td>6.16.8</td>
<td>Results of LM</td>
<td>161</td>
</tr>
<tr>
<td>6.16.9</td>
<td>Results of Authentication</td>
<td>165</td>
</tr>
<tr>
<td>6.17</td>
<td>BIOMETRIC PERFORMANCE ANALYSIS</td>
<td>166</td>
</tr>
<tr>
<td>6.18</td>
<td>VHDL SIMULATION RESULTS</td>
<td>167</td>
</tr>
<tr>
<td>6.19</td>
<td>EXPERIMENTAL SETUP</td>
<td>169</td>
</tr>
<tr>
<td>6.20</td>
<td>SUMMARY</td>
<td>173</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>7</td>
<td>CONCLUSION</td>
<td>174</td>
</tr>
<tr>
<td>7.1</td>
<td>CONCLUSION</td>
<td>174</td>
</tr>
<tr>
<td>7.2</td>
<td>FUTURE SCOPE OF THE WORK</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>APPENDIX 1 IMAGE PROCESSING TOOLS</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>A1.1 LIST OF IMAGE PROCESSING TOOLS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USED IN THE IRIS PROCESSING SYSTEM</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>APPENDIX 2 FPGA UTILIZATION</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>A2.1 LOGICAL BLOCKS UTILIZATION ON</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPATRAN-3E FPGA</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>APPENDIX 3 FLOW CHART</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>A2.1 FLOW CHART OF PROPOSED WORK</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>LIST OF PUBLICATIONS</td>
<td>192</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Gray Scale Level Distribution</td>
<td>75</td>
</tr>
<tr>
<td>4.1</td>
<td>Histogram Equalization Process</td>
<td>97</td>
</tr>
<tr>
<td>4.2</td>
<td>Histogram Mapping Value</td>
<td>98</td>
</tr>
<tr>
<td>5.1</td>
<td>Frequency Distribution Levels of the Images</td>
<td>124</td>
</tr>
<tr>
<td>6.1</td>
<td>Details of Iris Data Set</td>
<td>156</td>
</tr>
<tr>
<td>6.2</td>
<td>Biometric Performance Parameter</td>
<td>166</td>
</tr>
<tr>
<td>6.3</td>
<td>Comparison of Proposed Method</td>
<td>167</td>
</tr>
<tr>
<td>6.4</td>
<td>Hardware Pin Out Details</td>
<td>170</td>
</tr>
<tr>
<td>6.5</td>
<td>Hardware Setting Input and Output Details</td>
<td>171</td>
</tr>
<tr>
<td>6.6</td>
<td>Device Utilization Summary</td>
<td>172</td>
</tr>
<tr>
<td>A1.1</td>
<td>Most used Matlab Commands for Iris Image</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Processing</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Biometric enrolment across the India</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Finger print scanner and impression</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Hand geometry scanner and fingers impressions</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Palm biometric device and impression</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Face biometric device</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>Shape of nose and ear biometrics</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>Vein Biometrics Scanner</td>
<td>9</td>
</tr>
<tr>
<td>1.8</td>
<td>Lip biometric source</td>
<td>10</td>
</tr>
<tr>
<td>1.9</td>
<td>Thermo gram image</td>
<td>11</td>
</tr>
<tr>
<td>1.10</td>
<td>Body odour sensor device</td>
<td>12</td>
</tr>
<tr>
<td>1.11</td>
<td>Skin biometrics</td>
<td>13</td>
</tr>
<tr>
<td>1.12</td>
<td>Gait biometrics</td>
<td>14</td>
</tr>
<tr>
<td>1.13</td>
<td>Signature biometrics</td>
<td>14</td>
</tr>
<tr>
<td>1.14</td>
<td>Keystroke biometrics</td>
<td>15</td>
</tr>
<tr>
<td>1.15</td>
<td>Voice pattern</td>
<td>16</td>
</tr>
<tr>
<td>1.16</td>
<td>Human eye structure</td>
<td>18</td>
</tr>
<tr>
<td>1.17</td>
<td>Retina</td>
<td>19</td>
</tr>
<tr>
<td>1.18</td>
<td>Iris image</td>
<td>20</td>
</tr>
<tr>
<td>1.19</td>
<td>Iris capturing with digital camera</td>
<td>21</td>
</tr>
<tr>
<td>1.20</td>
<td>Single iris scanner device</td>
<td>21</td>
</tr>
<tr>
<td>1.21</td>
<td>Dual iris scanner device</td>
<td>21</td>
</tr>
<tr>
<td>2.1</td>
<td>Distribution of Literature Survey</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Front view of the eye</td>
<td>58</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>3.2</td>
<td>Sample of UBIRIS V2 images</td>
<td>59</td>
</tr>
<tr>
<td>3.3</td>
<td>Conversion of gray scale to binary image</td>
<td>62</td>
</tr>
<tr>
<td>3.4</td>
<td>Gradient edge detection operator</td>
<td>67</td>
</tr>
<tr>
<td>3.5</td>
<td>Flow chart of MLRP algorithm in left edges</td>
<td>71</td>
</tr>
<tr>
<td>3.6</td>
<td>Flow chart of MLRP algorithm in right edges</td>
<td>72</td>
</tr>
<tr>
<td>3.7</td>
<td>(a) Iris01 input image (b) Iris02 input image</td>
<td>73</td>
</tr>
<tr>
<td>3.8</td>
<td>(a) Resized image iris01 (b) Resized image iris02</td>
<td>74</td>
</tr>
<tr>
<td>3.9</td>
<td>(a) Normalized iris01 (b) Normalized iris02</td>
<td>74</td>
</tr>
<tr>
<td>3.10</td>
<td>Iris01 median filtered outputs (a) 3x3 Mask, (b) 5x5 (c) 7x7 (d) 9x9 (e) 11x11 (f) 13x13</td>
<td>76</td>
</tr>
<tr>
<td>3.11</td>
<td>Iris02 median filtered outputs. a) 3x3 Mask, (b) 5x5 (c) 7x7 (d) 9x9 (e) 11x11, (f) 13x13</td>
<td>76</td>
</tr>
<tr>
<td>3.12</td>
<td>(a) Binary Converted Iris01 (b) Binary Converted Iris02</td>
<td>77</td>
</tr>
<tr>
<td>3.13</td>
<td>(a) Morphological area open of Iris01 (b) Morphological area open of Iris02</td>
<td>78</td>
</tr>
<tr>
<td>3.14</td>
<td>a) Dilation and image close of Iris01. b) Dilation and image close of Iris02</td>
<td>78</td>
</tr>
<tr>
<td>3.15</td>
<td>(a) Morphological complement of Iris0 (b) Morphological complement of Iris02</td>
<td>79</td>
</tr>
<tr>
<td>3.16</td>
<td>(a) Border clear output of Iris01 (b) Border clear output of Iris02</td>
<td>79</td>
</tr>
<tr>
<td>3.17</td>
<td>(a) Labelling and pupil boundary of Iris01, (b) Labelling and pupil boundary of Iris02</td>
<td>80</td>
</tr>
</tbody>
</table>
3.18 (a) Roberts edge detection of Iris01
 (b) Roberts edge detection of Iris02
3.19 (a) Sobel edge detection of Iris01
 (b) Sobel edge detection of Iris02
3.20 (a) Prewitt edge detection of Iris01
 (b) Prewitt edge detection of Iris02
3.21 (a) Canny edge detection of Iris01
 (b) Canny edge detection of Iris02
3.22 Canny detection of iris01 at various
 threshold values (a) Threshold of 2
 (b) Threshold of 4 (c) Threshold of 5
 (d) Threshold of 7 (e) Threshold of 10 (f)
 Threshold of 11
3.23 Canny detection of iris02 at various
 threshold values (a) Threshold of 2 (b)
 Threshold of 4 (c) Threshold of 5 (d)
 Threshold of 7, e) Threshold of 10, (f)
 Threshold of 11
3.24 (a) Iris boundary of iris 01 (b) Iris boundary
 of iris02
3.25 (a) Iris and pupil boundary of iris01 (b) Iris
 and pupil boundary of iris02
4.1 Depth of eyelids and lashes (a) Hazard iris.
 (b) Hazard free iris
4.2 Iris boundary frame (a) Hazard iris (b)
 Hazard free iris
4.3 Polar coordinate system
<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Polar to rectangular coordinate conversion system</td>
<td>94</td>
</tr>
<tr>
<td>4.5</td>
<td>Circular iris to rectangular iris</td>
<td>94</td>
</tr>
<tr>
<td>4.6</td>
<td>Histogram replaceable matrix</td>
<td>98</td>
</tr>
<tr>
<td>4.7</td>
<td>Canny edge detector with the threshold value of 4 (a) Iris01 image (b) Iris02 image</td>
<td>99</td>
</tr>
<tr>
<td>4.8</td>
<td>Cropped iris image (a) Iris01 image (b) Iris02 image</td>
<td>99</td>
</tr>
<tr>
<td>4.9</td>
<td>Segmented iris region (a) Iris01 image (b) Iris02 image</td>
<td>100</td>
</tr>
<tr>
<td>4.10</td>
<td>Rectangular iris (a) Iris01 image (b) Iris02 image</td>
<td>101</td>
</tr>
<tr>
<td>4.11</td>
<td>Histogram equalization (a) Iris01 image (b) Iris02 image</td>
<td>101</td>
</tr>
<tr>
<td>4.12</td>
<td>Histogram plot (a) Rectangular iris01 (b) Histogram equalized iris01</td>
<td>102</td>
</tr>
<tr>
<td>4.13</td>
<td>Histogram plot (a) Rectangular iris02 (b) Histogram equalized iris02</td>
<td>102</td>
</tr>
<tr>
<td>5.1</td>
<td>Relationship between the scaling and wavelet function</td>
<td>106</td>
</tr>
<tr>
<td>5.2</td>
<td>Filter bank with analysis and synthesis part</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>Structure of 2-D DWT</td>
<td>111</td>
</tr>
<tr>
<td>5.4</td>
<td>Structure of complex dual tree wavelet transforms</td>
<td>112</td>
</tr>
<tr>
<td>5.5</td>
<td>2D-CDTWT frequency band signals</td>
<td>115</td>
</tr>
<tr>
<td>5.6</td>
<td>Mode-1 spatial row projection</td>
<td>116</td>
</tr>
<tr>
<td>5.7</td>
<td>Mode-2 Spatial row projection</td>
<td>117</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.8</td>
<td>Mode-3 spatial time projection</td>
<td>117</td>
</tr>
<tr>
<td>5.9</td>
<td>2D Analysis on iris image</td>
<td>118</td>
</tr>
<tr>
<td>5.10</td>
<td>3D Analysis on iris images</td>
<td>119</td>
</tr>
<tr>
<td>5.11</td>
<td>Enhanced iris image (a) Iris01 image (b) Iris02 image</td>
<td>122</td>
</tr>
<tr>
<td>5.12</td>
<td>Vertical frequency band signal (a) Iris01 image (b) Iris02 image</td>
<td>122</td>
</tr>
<tr>
<td>5.13</td>
<td>Horizontal frequency band signal (a) Iris01 image (b) Iris02 image</td>
<td>123</td>
</tr>
<tr>
<td>5.14</td>
<td>Diagonal frequency band signal (a) Iris01 image (b) Iris02 image</td>
<td>123</td>
</tr>
<tr>
<td>5.15</td>
<td>MPCA analysis using mode-1 and mode-2</td>
<td>125</td>
</tr>
<tr>
<td>5.16</td>
<td>MPCA analysis using mode-1, mode-2 and Mode-3</td>
<td>126</td>
</tr>
<tr>
<td>6.1</td>
<td>Neural Network with weight parameter</td>
<td>129</td>
</tr>
<tr>
<td>6.2</td>
<td>Neural network with weight and bias function</td>
<td>130</td>
</tr>
<tr>
<td>6.3</td>
<td>NN with input and output activation function</td>
<td>131</td>
</tr>
<tr>
<td>6.4</td>
<td>Illustration of identify function</td>
<td>132</td>
</tr>
<tr>
<td>6.5</td>
<td>Illustration of step function</td>
<td>132</td>
</tr>
<tr>
<td>6.6</td>
<td>Illustration of binary sigmoid function</td>
<td>133</td>
</tr>
<tr>
<td>6.7</td>
<td>Illustration of tansig function</td>
<td>134</td>
</tr>
<tr>
<td>6.8</td>
<td>Illustration of threshold function</td>
<td>134</td>
</tr>
<tr>
<td>6.9</td>
<td>Basic network architecture</td>
<td>136</td>
</tr>
<tr>
<td>6.10</td>
<td>Single stage FFBPNN</td>
<td>138</td>
</tr>
<tr>
<td>6.11</td>
<td>Multi stage FFBPNN</td>
<td>138</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>6.12</td>
<td>Block diagram of FPGA</td>
<td>148</td>
</tr>
<tr>
<td>6.13</td>
<td>Proposed device model</td>
<td>150</td>
</tr>
<tr>
<td>6.14</td>
<td>Proposed FPGA enhancement board</td>
<td>150</td>
</tr>
<tr>
<td>6.15</td>
<td>Implementation block diagram</td>
<td>151</td>
</tr>
<tr>
<td>6.16</td>
<td>FFBPNN Training and Testing using BFGS algorithm</td>
<td>156</td>
</tr>
<tr>
<td>6.17</td>
<td>FFBPNN Training and Testing using CGF algorithm</td>
<td>157</td>
</tr>
<tr>
<td>6.18</td>
<td>FFBPNN Training and Testing using CGP algorithm</td>
<td>158</td>
</tr>
<tr>
<td>6.19</td>
<td>FFBPNN Training and Testing using SCG algorithm</td>
<td>158</td>
</tr>
<tr>
<td>6.20</td>
<td>FFBPNN Training and Testing using RP algorithm</td>
<td>159</td>
</tr>
<tr>
<td>6.21</td>
<td>FFBPNN Training and Testing using OSS algorithm</td>
<td>160</td>
</tr>
<tr>
<td>6.22</td>
<td>FFBPNN Training and Testing using GDX algorithm</td>
<td>160</td>
</tr>
<tr>
<td>6.23</td>
<td>FFBPNN with LM algorithm at 7th epoch</td>
<td>161</td>
</tr>
<tr>
<td>6.24</td>
<td>FFBPNN with LM algorithm at 9th epoch</td>
<td>161</td>
</tr>
<tr>
<td>6.25</td>
<td>FFBPNN with LM algorithm at 20th epoch</td>
<td>162</td>
</tr>
<tr>
<td>6.26</td>
<td>FFBPNN with LM algorithm at 24th epoch</td>
<td>163</td>
</tr>
<tr>
<td>6.27</td>
<td>FFBPNN with LM algorithm at 26th epoch</td>
<td>163</td>
</tr>
<tr>
<td>6.28</td>
<td>FFBPNN with LM algorithm at 29th epoch</td>
<td>164</td>
</tr>
<tr>
<td>6.29</td>
<td>FFBPNN with LM algorithm at 35th epoch</td>
<td>164</td>
</tr>
<tr>
<td>6.30</td>
<td>Matched iris output</td>
<td>165</td>
</tr>
<tr>
<td>6.31</td>
<td>Un-matched iris output</td>
<td>165</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.32</td>
<td>VHDL waveform simulation</td>
<td>168</td>
</tr>
<tr>
<td>6.33</td>
<td>Experimental setup</td>
<td>169</td>
</tr>
<tr>
<td>6.34</td>
<td>Hardware settings for trained image</td>
<td>171</td>
</tr>
<tr>
<td>6.35</td>
<td>Hardware settings for untrained image</td>
<td>172</td>
</tr>
<tr>
<td>A2.1</td>
<td>Logical Block Utilization inside the FPGA</td>
<td>178</td>
</tr>
<tr>
<td>A3.1</td>
<td>Flow Chart of Proposed Work</td>
<td>179</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_a</td>
<td>Adjustable learning rate</td>
</tr>
<tr>
<td>Θ</td>
<td>Angular value</td>
</tr>
<tr>
<td>\cdot</td>
<td>Binary Close</td>
</tr>
<tr>
<td>\circ</td>
<td>Binary Open</td>
</tr>
<tr>
<td>$*$</td>
<td>Convolution operation</td>
</tr>
<tr>
<td>σ_{RC}</td>
<td>Covariance matrix</td>
</tr>
<tr>
<td>\oplus</td>
<td>Dilation</td>
</tr>
<tr>
<td>λ</td>
<td>Eigen value</td>
</tr>
<tr>
<td>\ominus</td>
<td>Erosion</td>
</tr>
<tr>
<td>δ</td>
<td>Error correction parameter</td>
</tr>
<tr>
<td>∇</td>
<td>Gradient Magnitude</td>
</tr>
<tr>
<td>ϕ</td>
<td>Gradient orientation angle</td>
</tr>
<tr>
<td>\cap</td>
<td>Intersection</td>
</tr>
<tr>
<td>α</td>
<td>Learning rate</td>
</tr>
<tr>
<td>μ_{RC}</td>
<td>Mean value of feature matrix</td>
</tr>
<tr>
<td>Ψ</td>
<td>Prototype wavelet function.</td>
</tr>
<tr>
<td>\wedge</td>
<td>Rotated image</td>
</tr>
<tr>
<td>\varnothing</td>
<td>Scaling parameter of wavelet transform</td>
</tr>
<tr>
<td>ψ</td>
<td>Steepness factor</td>
</tr>
<tr>
<td>θ_t</td>
<td>Threshold limit value</td>
</tr>
<tr>
<td>\subseteq</td>
<td>Translation</td>
</tr>
</tbody>
</table>
Abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>ARM</td>
<td>Advanced RISC Machine</td>
</tr>
<tr>
<td>ASIC</td>
<td>Application Specific Integrated Circuits</td>
</tr>
<tr>
<td>ATM</td>
<td>Automated Teller Machine</td>
</tr>
<tr>
<td>B</td>
<td>Structuring element</td>
</tr>
<tr>
<td>b, Bm</td>
<td>Biasing element</td>
</tr>
<tr>
<td>BCD</td>
<td>Binary Coded Decimal</td>
</tr>
<tr>
<td>BFGS</td>
<td>Broyden Fletcher Goldfarb Shanno</td>
</tr>
<tr>
<td>BPN</td>
<td>Back Propagation Network</td>
</tr>
<tr>
<td>CASIA</td>
<td>Chinese Academy of Science, Institute of Automation</td>
</tr>
<tr>
<td>CDTWT</td>
<td>Complex Dual Tree Wavelet Transform</td>
</tr>
<tr>
<td>CGF</td>
<td>Conjugate Gradient Fletcher-Reeves</td>
</tr>
<tr>
<td>CGP</td>
<td>Conjugate Gradient Polak</td>
</tr>
<tr>
<td>CLB</td>
<td>Configurable Logic Blocks</td>
</tr>
<tr>
<td>D</td>
<td>Dimension</td>
</tr>
<tr>
<td>DAL</td>
<td>Dynamic Array Logic</td>
</tr>
<tr>
<td>DCT</td>
<td>Discrete Courier Transform</td>
</tr>
<tr>
<td>delta_x</td>
<td>Size of weight change</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier Transform</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processor</td>
</tr>
<tr>
<td>DWT</td>
<td>Discrete Wavelet Transform</td>
</tr>
<tr>
<td>DWT</td>
<td>Discrete Wavelet Transforms</td>
</tr>
<tr>
<td>dx</td>
<td>Change in weight and bias value</td>
</tr>
</tbody>
</table>
dx_old - Previous weight and bias value
e - Error signal
ECG - Electro Cardio Gram
EEG - Electro Echo Gram
EEPROM - Electrically Erasable Programmable Read Only Memory
EigenTensor - Eigen tensor matrix
EMD - Empirical Mode Decomposition
EMP - Elementary Multilinear Projection
e-Shakti - Electronic Shakti
f - Function
\(F_0 \) - Output of low pass synthesis filter
\(F_1 \) - Output of high pass synthesis filter
FAR - False Acceptance Rate
FF - Feed Forward
FFBPNN - Feed Forward Back Propagation Neural Network
FFNN - Feed Forward Neural Network
FFT - Fast Fourier Transform
FIR - Finite Impulse Response
FN - False Negative
FP - False Positive
FPGA - Field Programmable Gate Array
FPLA - Field Programmable Logical Array
FRR - False Rejection Rate
FSM - Finite State Machine
\(G_0 \) - Low pass synthesis filter coefficient
\(G_1 \) - High pass synthesis filter coefficient
GDX - Gradient Decent with momentum
\(G_x \) - Partial derivative gradient in the direction ‘x’
gx - Gradient parameter
gx-1 - Previous gradient parameter
G_y - Partial derivative gradient in the direction ‘y’
H - Hessian matrix
H_0 - Low pass analysis filter coefficient
H_1 - High pass analysis filter coefficient
HDL - Hardware Descriptive Language
HH - Diagonal frequency component
HL - Horizontal frequency component
H_x - Horizontal prewitt mask matrix
Hz - Hertz
I/O - Input / Output
ICA - Independent Component Analysis
ICE - Iris Challenge Evaluation
I_{inter} - Current gray scale intensity Value
IIR - Infinite Impulse Response filter
IITD - Indian Institute of Technology, Delhi
I_{maxnew} - New maximum gray scale intensity value.
I_{minnew} - New minimum gray scale intensity value.
I_{minold} - Old minimum gray scale intensity value.
I_{new} - Normalized gray scale intensity value.
IR - Infra Red
ISP - In-System-Programmer
J - Jacobian matrix
JTAG - Join Test Action Group
k - Canny high threshold constant value
L^2 - Sub set
LBP - Linear Binary Pattern
LCD - Liquid Crystal Display
LDA - Linear Discriminant Analysis
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDPC</td>
<td>Low Density Parity Check</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LFDA</td>
<td>Local Fisher Discriminant Analysis</td>
</tr>
<tr>
<td>LH</td>
<td>Vertical frequency component</td>
</tr>
<tr>
<td>LM</td>
<td>Levenberg-Marquardt</td>
</tr>
<tr>
<td>LSSC</td>
<td>Linear Separable Sub Code</td>
</tr>
<tr>
<td>LVQ</td>
<td>Linear Vector Quantization</td>
</tr>
<tr>
<td>m</td>
<td>Canny sigma constant value</td>
</tr>
<tr>
<td>M</td>
<td>Weights between input and hidden layer.</td>
</tr>
<tr>
<td>mc</td>
<td>momentum coefficients</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MMU</td>
<td>Multimedia University</td>
</tr>
<tr>
<td>MPCA</td>
<td>Multilinear Principle Component Analysis</td>
</tr>
<tr>
<td>MSL</td>
<td>Multilinear Subspace Learning</td>
</tr>
<tr>
<td>MWT</td>
<td>Multi-resolution Wavelet Transforms</td>
</tr>
<tr>
<td>N</td>
<td>Hidden neurons</td>
</tr>
<tr>
<td>N_input</td>
<td>Input of the neural hidden layer</td>
</tr>
<tr>
<td>N_output</td>
<td>Output of the neural hidden layer</td>
</tr>
<tr>
<td>NICE</td>
<td>Noisy Iris Challenge Evaluation</td>
</tr>
<tr>
<td>nm</td>
<td>Nano meter</td>
</tr>
<tr>
<td>NN</td>
<td>Neural Network</td>
</tr>
<tr>
<td>NPV</td>
<td>Negative predictive value</td>
</tr>
<tr>
<td>NUID</td>
<td>National Unique Identification card</td>
</tr>
<tr>
<td>OSIRIS</td>
<td>Open Source for IRIS</td>
</tr>
<tr>
<td>OSS</td>
<td>One Step Secant</td>
</tr>
<tr>
<td>p</td>
<td>Scaling parameter</td>
</tr>
<tr>
<td>PAL</td>
<td>Programmable Array Logic</td>
</tr>
<tr>
<td>PCA</td>
<td>Principle Component Analysis</td>
</tr>
<tr>
<td>PLA</td>
<td>Programmable Logical Array</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PPV</td>
<td>Positive predictive value</td>
</tr>
<tr>
<td>q</td>
<td>Shifting parameter</td>
</tr>
<tr>
<td>r</td>
<td>Radius</td>
</tr>
<tr>
<td>RANSAC</td>
<td>Random Sample Consensus</td>
</tr>
<tr>
<td>RBF</td>
<td>Radial Basis Function</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>R_{iris, r_i}</td>
<td>Iris radius</td>
</tr>
<tr>
<td>RNCV</td>
<td>Relative Number of Conjunctival Vessels</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of Interest</td>
</tr>
<tr>
<td>RP</td>
<td>Resilient back Propagation</td>
</tr>
<tr>
<td>R_{pupil, r_p}</td>
<td>Pupil radius</td>
</tr>
<tr>
<td>SBS</td>
<td>Sequential Backward Search</td>
</tr>
<tr>
<td>SCG</td>
<td>Scaled Conjugate Gradient</td>
</tr>
<tr>
<td>SFS</td>
<td>Sequential Forward Search</td>
</tr>
<tr>
<td>SR</td>
<td>Specular Reflection</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>t_{target}</td>
<td>Target output</td>
</tr>
<tr>
<td>Tensor$_{\text{RC}}$</td>
<td>Reduce weight elements of tensor</td>
</tr>
<tr>
<td>TN</td>
<td>True Negative</td>
</tr>
<tr>
<td>TP</td>
<td>True Positive</td>
</tr>
<tr>
<td>TQFP</td>
<td>Thin Quad Flat Package</td>
</tr>
<tr>
<td>TTP</td>
<td>Tensor to Tensor Projection</td>
</tr>
<tr>
<td>TVP</td>
<td>Tensor to Vector Projection</td>
</tr>
<tr>
<td>UBIIRIS</td>
<td>University of Beria IRIS</td>
</tr>
<tr>
<td>UPOL</td>
<td>University of Palacky in Olomouc</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>V</td>
<td>Version</td>
</tr>
<tr>
<td>V_{j}</td>
<td>Orthogonal complement</td>
</tr>
</tbody>
</table>
\(V_y \) - Vertical prewitt mask matrix
\(W \) - Weights between hidden and output layer.
\(W_{HH_IMAG} \) - Imaginary part of diagonal frequency components
\(W_{HH_REAL} \) - Real part of diagonal frequency components
\(W_{HL_IMAG} \) - Imaginary part of horizontal frequency components
\(W_{HL_REAL} \) - Real part of horizontal frequency components
\(W_j \) - orthogonal difference
\(W_{LH_IMAG} \) - Imaginary part of vertical frequency components
\(W_{LH_REAL} \) - Real part of vertical frequency components
\(W_{RC} \) - Elements of tensor matrix
\(WVU \) - Western Virginia University
\(X, I \) - Input image matrix
\(X_{A0} \) - Output of low pass analysis coefficient
\(X_{A1} \) - Output of high pass analysis coefficient
\(X_c \) - Row value of pupil centre
\(X_i \) - Row value of iris centre
\(X_{iris} \) - Rectangular co-ordinate of iris with respect to row
\(X_{pupil} \) - Rectangular co-ordinate of pupil with respect to row
\(X_{S0} \) - Output of low pass interpolation
\(X_{S0} \) - Output of high pass interpolation
\(Y \) - Output image matrix
\(Y_{A0} \) - Output of low pass decimator
\(Y_{A1} \) - Output of high pass decimator
\(Y_c \) - Column value of pupil centre
\(Y_i \) - Column value of iris centre
\(Y_{input} \) - Net input of the neural network
\(Y_{iris} \) - Rectangular co-ordinate of iris with respect to column
\(Y_{out} \) - Output of neural network
\(Y_{pupil} \) - Rectangular co-ordinate of pupil with respect to column
Z_{input} - Input of the neural output layer

Z_{output} - Output of the neural output layer

ΔM - Change in weight between the input and hidden layer

ΔW - Change in weight between the hidden and output layer