1.5.5 Brunauer Emmett Teller Adsorption Isotherm 19
1.5.6 Kinetics of Adsorption 21
1.6 Applications of Activated Carbon 23
1.6.1 Water Treatment 24
1.6.2 Odour Control 26
1.6.3 Activated Carbon Fibers 26
1.6.4 Gas Separation and Storage 27
1.6.5 Refrigeration and Heat Pumping 30
1.6.6 Recovery of Gold 30
1.6.7 Electrical Applications 31
1.6.8 In Food Industry 31
1.6.9 Miscellaneous Applications 32
1.7 Impregnated Activated Carbons 32
1.8 Comparison of GAC and PAC 35
1.9 Limitations of Activated Carbon Application 36
1.10 Scope of the Work 37

Chapter 2
Preparation and Characterization of Magnetic Iron Oxide Loaded Activated Carbons 39

2.1 Introduction 39
2.2 Preparation 39
2.2.1 GAC 40
2.2.2 Magnetic Iron Oxide (MIO) 40
2.2.3 MGAC5 41
3.3.3 Regeneration Studies on Composites 75
3.4 Results and Discussion 76
3.4.1 Adsorption of Phenol on Activated Carbon - Magnetic Iron Oxide Composites 76
3.4.1a Adsorption Kinetics 78
3.4.1b Adsorption Isotherm Studies 81
3.4.1c Evaluation of Thermodynamic Parameters 86
3.4.2 Adsorption of p-Nitrophenol on Activated Carbon - Magnetic Iron Oxide composites 87
3.4.2a Adsorption Kinetics 88
3.4.2b Adsorption Isotherm Studies 90
3.4.2c Evaluation of Thermodynamic Parameters 94
3.4.3 Regeneration Studies 95
3.4.4 Adsorption of Methylene Blue on Activated Carbon - Magnetic Iron Oxide Composites 96
3.4.4a Kinetics of Adsorption 97
3.4.4b Equilibrium Isotherm Studies using Methylene Blue 99
3.4.4c Evaluation of Thermodynamic Parameters 103

Chapter 4

Separation Studies on magnetic Iron Oxide

Loaded Activated Carbon 105

4.1 Introduction 105
4.2 Materials and Methods 106
4.2.1 Materials 106
4.2.2 Methods 108
4.3 Results and Discussion 110
4.3.1 Separation Efficiency at Zero Magnetic Fields 110
4.3.2 Dependence of Retention Efficiency of Composite Samples on Iron Oxide Loading 111

4.3.3 Dependence of Retention Efficiency of Composites on Magnetic Field 112

4.3.4 Dependence of Retention Efficiency on Flow Velocity 113

Chapter 5

Summary and Conclusion 115

References