2.10.1. Batch fermentation…………………………………………………… 35-36
2.10.2. Fed batch fermentation………………………………………………… 36
2.10.3. Continuous fermentation……………………………………………… 36-37
2.10.4. Submerged fermentation……………………………………………… 37

2.11. Effect of factors on bioethanol production through submerged fermentation (SmF) process ……………………………………………………………… 37

2.11.1. Effects of physical parameters on bioethanol production……………… 38
 2.11.1.1. Effect of substrate concentration on bioethanol production. 39
 2.11.1.2. Effect of fermentation time on bioethanol production……… 39-40
 2.11.1.3. Effect of pH on bioethanol production……………………… 40
 2.11.1.4. Effect of temperature on bioethanol production ………… 41
 2.11.1.5. Effect of inoculum volume on bioethanol production ….. 41-42
 2.11.1.6. Effect of inoculum age on bioethanol production……….. 42
 2.11.1.7. Effect of agitation on bioethanol production …………….. 42

2.12. Effect of chemical and nutritional parameters on bioethanol production….. 43
 2.12.1. Effect of inorganic nitrogen source on bioethanol production 43-44
 2.12.2. Effect of trace elements on bioethanol production ………… 44-45
 2.12.2.1. Effect of copper chloride (CuCl2) on bioethanol production 45
 2.12.2.2. Effect of magnesium chloride (MgCl2.6H2O) on bioethanol production ……………………………………………………………… 45-46
 2.12.2.3. Effect of zinc sulphate (ZnSO4.7H2O) on bioethanol production…………………………………………………………… 46
 2.12.2.4. Effect of manganese chloride (MnCl2.6H2O) on bioethanol production ……………………………………………………………… 47
 2.12.2.5. Effect of potassium phosphate (K3HPO4) on bioethanol production ……………………………………………………………… 47
 2.12.2.6. Effect of calcium chloride (CaCl2) on bioethanol production…………………………………………………………… 48
 2.12.2.7. Effect of cobalt chloride (CoCl2) on bioethanol production…………………………………………………………… 48
 2.12.2.8. Effect of vitamins on bioethanol production ………………… 48-49
 2.12.2.9. Effect of amino acids on bioethanol production …………… 49
 2.12.2.10. Effect of chelators on bioethanol production ………………. 49
CONTENTS

3.15. Calculations of percentage of bioethanol in fermented medium.................. 65
3.16. Optimization studies using Box-Wilson response surface methodology (RSM)... 67-71
3.17. Design of medium-I using standard optimization process and medium – II with statistically optimization of fermentative conditions.................. 72
3.18. Table-Coded values of central composite design of variables \(X_1\), \(X_2\) and \(X_3\) for bioethanol production.. 73
3.19. Table: The central composite design matrix applied for the optimization of different medium design factors of the medium-II on bioethanol production.. 74

Chapter-IV. 4 Results and Discussion
4.1. Total fermentable sugars in mahua flower.. 75
4.1.2 Growth of microorganisms... 76
4.1.2.1 Table-Growth of microorganisms.. 77
4.1.2.2 Chart-Growth of microorganisms... 77
4.2. Selection of microorganisms for bioethanol production......................... 78
4.2.1. Table-Selection of microorganisms for bioethanol production............ 79
4.2.2. Chart-Selection of microorganisms for bioethanol production.......... 79
4.3. Effect of substrate concentration on bioethanol production.................... 80-82
4.3.1. Table-Effect of substrate concentration on bioethanol production.... 81
4.3.2. Chart-Effect of substrate concentration on bioethanol production.... 81
4.4. Effect of temperature on the production of bioethanol......................... 83
4.4.1. Table-Effect of temperature on the production of bioethanol......... 84
4.4.2. Chart-Effect of temperature on the production of bioethanol........ 84
4.5. Effect of pH on the production of bioethanol... 85
4.5.1. Table-Effect of pH on the production of bioethanol......................... 86
4.5.2. Chart-Effect of pH on the production of bioethanol......................... 86
4.6. Effect of agitation on the production of bioethanol.............................. 87
4.6.1. Table-Effect of agitation on the production of bioethanol............... 88
4.6.2. Chart-Effect of agitation on the production of bioethanol.............. 88
4.7. Effect of inoculum volume on the production of bioethanol............... 89
4.7.1. Table-Effect of inoculum volume on the production of bioethanol…….. 90
4.7.2. Chart-Effect of inoculum volume on the production of bioethanol…….. 90
4.8. Effect of inorganic nitrogen source on the production of bioethanol…… 91
4.8.1. Table- Effect of (NH₄)₂SO₄ and (NH₄)₂Cl₂ on production of bioethanol.. 92
4.8.2. Chart-Effect of (NH₄)₂SO₄ and (NH₄)₂Cl₂ on production of bioethanol... 92
4.9. Effect of copper chloride (CuCl₂) on the production of bioethanol………. 93
4.9.1. Table-Effect of copper (CuCl₂) on the production of bioethanol………. 94
4.9.2. Chart-Effect of copper (CuCl₂) on the production of bioethanol………. 94
4.10. Effect of manganese chloride (MnCl₂.4H₂O) on the production of bioethanol……………………………………………………………… 95
4.10.1. Table-Effect of manganese (MnCl₂.4H₂O) on the production of bioethanol……………………………………………………………… 96
4.10.2. Chart-Effect of manganese (MnCl₂.4H₂O) on the production of bioethanol……………………………………………………………… 96
4.11. Effect of magnesium (MgCl₂.6H₂O) on the production of bioethanol….. 97
4.11.1. Table-Effect of magnesium (MgCl₂.6H₂O) on the production of bioethanol……………………………………………………………… 98
4.11.2. Chart-Effect of magnesium (MgCl₂.6H₂O) on the production of bioethanol……………………………………………………………… 98
4.12. Effect of zinc (ZnSO₄.7H₂O) on the production of bioethanol…………… 99
4.12.1 Table-Effect of zinc (ZnSO₄.7H₂O) on the production of bioethanol…… 100
4.12.2 Chart-Effect of zinc(ZnSO₄.7H₂O) on the production of bioethanol… 100
4.13. Effect of biotin on the production of bioethanol………………………… 101
4.13.1 Table- Effect of biotin on the production of bioethanol…………………. 102
4.13.2 Chart- Effect of biotin on the production of bioethanol…………………. 102
4.14. Effect of amino acids on the production of bioethanol…………………… 103
4.14.1 Table-Effect of proline and glycine on the production of bioethanol….. 104
4.14.2 Chart-Effect of proline and glycine on the production of bioethanol…… 104
4.15. Effect of phosphorous (NaH₂PO₄) on the production of bioethanol…….. 105
4.15.1. Table: Effect of phosphorous (NaH₂PO₄) on the production of bioethanol……………………………………………………………… 105
4.15.2. Chart: Effect of phosphorous (NaH₂PO₄) on the production of bioethanol……………………………………………………………… 106
4.16. Effect of ethylene diamine tetra acetic acid (EDTA) on the production of bioethanol

4.16.1. Table-Effect of ethylene diamine tetra acetic acid (EDTA) on the production of bioethanol

4.16.2. Chart-Effect of ethylene diamine tetra acetic acid (EDTA) on the production of bioethanol

4.17. Effect of potassium phosphate (K₂HPO₄) on the production of bioethanol

4.17.1. Table-Effect of potassium phosphate (K₂HPO₄) on the production of bioethanol

4.17.2. Chart-Effect of potassium phosphate (K₂HPO₄) on the production of bioethanol

4.18. Effect of calcium chloride (CaCl₂) on the production of bioethanol

4.18.1. Table-Effect of calcium chloride (CaCl₂) on the production of bioethanol

4.18.2. Chart-Effect of calcium chloride (CaCl₂) on the production of bioethanol

4.19. Effect of cobalt chloride (COCl₂) on the production of bioethanol

4.19.1. Table-Effect of cobalt chloride (COCl₂) on the production of bioethanol

4.19.2. Chart-Effect of cobalt chloride (COCl₂) on the production of bioethanol

4.20. Effect of ferrous sulphate (Fe₂(SO₄)₃.H₂O) on the production of bioethanol

4.20.1. Table-Effect of ferrous sulphate (Fe₂(SO₄)₃.H₂O) on the production of bioethanol

4.20.2. Chart-Effect of ferrous sulphate (Fe₂(SO₄)₃.H₂O) on the production of bioethanol

4.21. Effect of oxygen (O₂) on the production of bioethanol

4.21.1. Table-Effect of oxygen (O₂) on the production of bioethanol

4.21.2. Chart-Effect of oxygen (O₂) on the production of bioethanol

4.22. Effect of sodium chloride (NaCl) on the production of bioethanol

4.22.1. Table-Effect of sodium chloride (NaCl) on the production of bioethanol
4.22.2. Chart-Effect of sodium chloride (NaCl) on the production of bioethanol 119
4.23. Effect of organic nitrogen on the production of bioethanol 119
4.23.1. Table-Effect of peptone on the production of bioethanol 120
4.23.2. Table-Effect of urea on the production of bioethanol 120
4.23.3. Table-Effect of yeast extract on the production of bioethanol 121
4.23.4. Chart-Effect of peptone, urea and yeast extract on the production of bioethanol 121
4.23.5. Table-Design of medium-I for the production of bioethanol 122
4.24. Production of bioethanol with medium-I 123
4.24.1. Table-Production of bioethanol with medium-I 123
4.24.2. Chart-Production of bioethanol with medium-I 124
4.24.3. Graph-Standard chromatogram of ethanol 125
4.24.4. Graph-Chromatogram of bioethanol yield of medium-I 126
4.24.5. Calculation of bioethanol percentage in the fermented medium-I 127
4.24.6. Table: The central composite design matrix applied for the optimization of different Medium design factors to enhance bioethanol yields 128
4.25. Design-I: Statistical optimizations of substrate concentration (g.L⁻¹), temperature (°C) and pH for the production of bioethanol in 5L bioreactor with central composite design (CCD) 129
4.25.1. Statistical optimizations of substrate concentration, temperature and pH using central composite design-I (CCD) on bioethanol production 131
4.25.2. Analysis of variance (ANOVA) for Quadratic model of Design-I 132
4.25.3. Optimum concentrations of independent variables of experimental and predicted concentrations of bioethanol using central composite design (CCD) of design-I 132
4.25.4. Graph-Isosresponse surface plot of temperature vs. substrate concentration (pH was kept constant at 5) on bioethanol production 133
4.25.5. Graph-Isosresponse counter plot of temperature vs. substrate concentration (pH was kept constant at 5) on bioethanol production 134
4.26. Design-II: Statistical optimizations of inoculum volume (v/v), agitation (RPM) and inoculum age (hours) for the production of bioethanol in 5L bioreactor with central composite design (CCD) 135
4.26.1. Statistical optimizations of inoculum volume, agitation and inoculum age using central composite design for bioethanol production of design-II .. 137
4.26.2. Analysis of variance (ANOVA) for Quadratic model of Design-II…….. 138
4.26.3. Optimum concentrations of independent variables of experimental and predicted concentrations of bioethanol using central composite design (CCD) of Design-II.. 138
4.26.4. Graph-Isoreponse surface plot of inoculum volume vs inoculum age (Agitation was kept constant at 120 RPM) on bioethanol production….. 139
4.26.5. Graph-Isoreponse counter plot of inoculum age vs. inoculum volume (Agitation was kept constant at 120 RPM) on bioethanol production…… 140
4.27. Design-III: Statistical optimizations of ammonium sulphate (NH₄)₂SO₄), copper sulphate (CuSO₄.5H₂O), manganese chloride (MgCl₂.6H₂O) for the production of bioethanol in 5L bioreactor using central composite design (CCD).. 141
4.27.1. Table: Statistical optimizations of ammonium sulphate, copper and manganese with central composite design for bioethanol production of Design-III.. 143
4.27.2. Analysis of variance (ANOVA) for full Quadratic of Design-III......... 144
4.27.3. Optimum concentrations of independent variables of experimental and predicted concentrations of bioethanol using central composite design (CCD) of Design-III.. 144
4.27.4. Graph-Isoreponse surface plot of copper chloride vs. ammonium sulphate (Manganese was kept constant at 0.06 g.l⁻¹) on bioethanol production.. 145
4.27.5. Graph- Isoreponse counter plot of ammonium sulphate vs manganese chloride (Copper chloride was kept constant at 0.5 g.l⁻¹) on bioethanol production.. 146
4.28. Design-IV: Statistical optimizations of magnesium chloride (MgCl₂.6H₂O), zinc sulphate (ZnSO₄.7H₂ O) and biotin for the production of bioethanol in 5L bioreactor for the production of bioethanol in 5L bioreactor using central composite design (CCD)…… 147
4.28.1. Table: Statistical optimizations of magnesium, zinc and biotin using
central composite design on bioethanol production of Design-IV 149
4.28.2. Analysis of variance (ANOVA) for Quadratic model of Design-IV 150
4.28.3. Optimum concentrations of independent variables of experimental and predicted concentrations of bioethanol obtained by the central composite design (CCD) of Design-IV 150
4.28.4. Graph-Isosresponse surface plot of magnesium chloride vs. zinc chloride (Biotin was kept constant at 24 mg.l\(^{-1}\)) on bioethanol production 151
4.28.5. Graph-Isosresponse counter plot of magnesium chloride vs. zinc chloride (Biotin was kept constant at 24 mg.l\(^{-1}\)) on bioethanol production 152
4.29. Design-V: Statistical optimizations of proline, sodium di-hydrogen phosphate (NaH\(_2\)PO\(_4\)) and ethylene di-amine tetra acetic acid (EDTA) for the production of bioethanol in 5L bioreactor using central composite design (CCD) 153
4.29.1. Table: Statistical optimizations of proline, phosphorus and EDTA using central composite design-V on bioethanol production of Design-V 155
4.29.2. Analysis of variance (ANOVA) for Quadratic model of Design-V 156
4.29.3. Optimum concentrations of independent variables of experimental and predicted concentrations of bioethanol obtained with central composite design (CCD) 156
4.29.4. Graph-Isosresponse surface plot of EDTA vs. phosphorous (Proline was kept constant at 0.150 g.l\(^{-1}\)) on bioethanol production 157
4.29.5. Graph-Isosresponse counter plot of proline vs. phosphorous (EDTA was kept constant at 5.0 g.l\(^{-1}\)) on bioethanol production 158
4.30. Design-VI: Statistical optimizations of potassium phosphate (K\(_2\)HPO\(_4\)), calcium chloride (CaCl\(_2\)) and cobalt chloride (COCl\(_2\)) for the production of bioethanol in 5L bioreactor using central composite design (CCD) 159
4.30.1. Table: Statistical optimization of potassium, calcium and cobalt using central composite design-VI on bioethanol production 161
4.30.2. Analysis of variance (ANOVA) for Quadratic model of Design-VI 162
4.30.3. Optimum concentrations of independent variables of experimental and predicted concentrations of bioethanol obtained with central composite design (CCD) of Design-VI 162
4.30.4. Graph-Isosresponse surface plot of potassium vs. calcium (Cobalt was...
kept constant at 80 mg.l⁻¹) on bioethanol production.......................... 163

4.30.5. Graph- Isoresponse counter plot of potassium vs. calcium (Cobalt was
kept constant at 80 mg.l⁻¹) on bioethanol production.......................... 164

4.31. Design-VII: Statistical optimizations of ferrous sulphate
(Fe₂(SO₄)₃·H₂O), oxygen (O₂) and sodium chloride (NaCl) for the
production of bioethanol using Central Composite Design.......................... 165

4.31.1. Table: Statistical optimizations of ferrous, oxygen and sodium chloride
using central composite design for bioethanol production of Design-VII.... 167

4.31.2. Analysis of variance (ANOVA) for Quadratic model of Design-VII..... 168

4.31.3 Optimum concentrations of independent variables of experimental and
predicted concentrations of bioethanol with central composite design
(CCD) of Design-VII.. 168

4.31.4. Graph- Isoresponse surface plot of oxygen vs ferrous sulphate (NaCl
was kept constant at 1.0 g.l⁻¹) on bioethanol production.................. 169

4.31.5. Graph- Isoresponse counter plot of ferrous sulphate vs NaCl (Oxygen
was kept constant at 0.3 g.l⁻¹) on bioethanol production..................... 170

4.32. Design-VIII: Statistical optimizations of peptone, urea and yeast extract
(g.l⁻¹) for the production of bioethanol in 5L bioreactor using central
composite design (CCD)... 171

4.32.1. Statistical optimizations of peptone, urea and yeast extract using central
composite design of Design-VIII.. 173

4.32.2. Analysis of variance (ANOVA) for Quadratic model of Design-VIII..... 174

4.32.3. Optimum concentrations of independent variables of experimental and
predicted concentrations of bioethanol with central composite design
(CCD) of Design- VIII.. 174

4.32.4. Graph-Isoreponse surface plot of yeast extract vs. peptone (Urea was
kept constant at 2.5g.l⁻¹) on bioethanol production.............................. 175

4.32.5. Graph-Isoreponse counter plot of peptone vs. east extract (Urea was
kept constant at 2.5g.l⁻¹) on bioethanol production.............................. 176

4.33. Experimental and predicted concentrations of bioethanol productions
various designs using response surface methodology......................... 177

4.34. Experimental and predicted concentrations of bioethanol productions
various designs using response surface methodology......................... 178
4.35. Statistical optimum conditions of various design medium components and experimental and predicted values of bioethanol production 179
4.36. Bioethanol production using statistically optimized conditions of medium-II .. 180
4.36.1. Table: Production of bioethanol with statistical optimized medium-II ... 181
4.36.2. Chart: Production of bioethanol with statistical optimized medium-II ... 181
4.36.3. Standard chromatogram of ethyl alcohol and n-butanol 182
4.36.4. Chromatogram of bioethanol production of fermented medium-II 183
4.36.5. Calculation of bioethanol percentage in the fermented medium-II 184

Chapter V. Summary and Conclusion .. 185
 5.1. Summary .. 185
 5.2. Economic impact of bioethanol production in India .. 196

Chapter VI. Bibliography ... 200
Appendix-I .. 244
Appendix-II .. 246
Appendix-III .. 247